
TLBleed

Translation leak-aside buffer: Defeating
cache side-channel protections with
TLB attack
B. Gras, K. Razavi, H. Bos, and C.
Giuffrida

Presented by
Ayoosh Bansal

Translation Lookaside Buffer (TLB)

It is a cache, where every entry contains
Virtual Address -> Physical Address mapping

Processor DRAM

A TLB Entry

Translation Lookaside Buffer (TLB)

It is a cache
Virtual Address -> Physical Address mapping

Processor DRAM

Translation
LookLeak-aside

Buffer !!!

Crypto Keys

Key

Plain
Text

Algo

Cipher
text

Key

Cipher
Text

Algo

Plain
text

Strings of 1s & 0s : 101010110010101001011110101000101010001010…

Stolen Keys
• ?

• Defeat Encryption
• Digital Identity

Timing Side Channel Attacks

Algorithm changes execution
Timing Based on key bits.

Defense Ideas?
• Remove key data based variations

• Hard to do

Timing Side Channel Attacks

Ability to analyze encrypt / decrypt timing or memory accesses

Create some characteristic signal pattern representation of
[Algorithm , Key bit 1] [Algorithm , Key bit 0]

Observe execution and match signal pattern

Shared Hardware Resource Signal
Observe Usage of Shared Resource to observe signal patterns.
Example: Cache based Side Channel Attacks

Requirements For Side Channel:
Different owners or privilege levels share resources.
Can observe other’s access patterns or timing.

Solutions ?
Schedule so resource access is by same owner or privilege level only.
Partition resources to isolate.
Remove the ability to observe other process’s activity

Modern Caches support these defenses

TLBleed : Threat Model

Victim : Crypto process

Attacker : Executes Unprivileged Code

Shared Resource : TLB

Scheduling : Same core
(Simultaneous Multithreading / Hyperthreading)

Microarchitecture: Known to attacker

Damage: Crypto Key Leakage

TLBleed : Recognition and Response

• Online Press coverage
• Wikipedia page

• Intel ignored TLBleed quoting preexisting data independent constant
time execution crypto primitives.

• OpenBSD disabled Hyper-Threading completely, disabling this
vulnerability at a large cost to processor performance.

TLBleed : Understanding the Channel
• TLBs types are documented, structure and address to entry mapping is not

• Authors reverse engineer the TLB characteristics
• Use Architectural Counters to measure TLB Hit/Miss.
• Craft memory request patterns with some hypotheses of TLB structure and see if

measurements conform to the hypotheses.

Skylake L1 i-TLB L1 d-TLB L2 TLB

Sets, Ways 8, 8 16, 4 128, 12

Virtual Address to
TLB Set M apping

Linear Linear XOR

Shared? No Yes Yes

• Discussion
• Past experiences with microarchitecture reverse engineering?
• Better approaches?

TLBleed: Unprivileged TLB Monitoring

• Access Sets
• Contained in L1 d-TLB
• Contained in L2 TLB, Larger than L1 d-TLB
• Larger than L2 TLB

• Profile
• L1 d-TLB Hit latency
• L1 d-TLB Miss, L2 TLB Hit latency
• L2 TLB Miss latency

• With this information, sweep over TLB, observe
misses to find which sets were used by other
HyperThread.

Monitor Logic

Memory Barrier;

Time stamp;

Pointer Chasing Accesses;

Memory Barrier;

Time Stamp;
Side Channel is Ready!

TLBleed : Do we have an attack?

• Instrumented victim code (Color
Code in figure)

• Attacker observes Victim’s TLB
usage (Blue Dots)

• A pattern emerges!
• Can’t use Set usage alone though

• You know what’s coming?

TLBleed : Cracking the Key

• Classifier output based on TLB latency +
Brute Force attempt to fix misclassifications

• 256-bit EdDSA encryption keys – 99%
• RSA 1024- bit secret exponent bits – 92%

Your
Thoughts?

Discussion : Strengths

• New attack surface.

• Bypasses cache centric defenses.

• ML based classifier creates lower entry cost to a new environment.

Discussion : Weaknesses

• Algorithm updates can defeat TLBleed. They had to use older time
variant versions in evaluation.

• System variations are not considered.

• Reconstructed key Reliability goes down with Larger Page Sizes.

• Hyper-Thread scheduling favors threads from same process.

Discussion : Real World Attack

1. Run a malware on victim machine or
multitenancy with victim.

2. Achieve malware and victim residency on
hyper-threads.

3. Determine if victim is using crypto keys.
4. Identify victim’s crypto application.
5. Reconstruct key.

Thank you!

Backup Slides

Set Associative Cache

8 Cache Lines divided in 4 Sets, 2 Way
Hash(Addr) determ ines Set num ber. Way is flexible.

“The eviction sets are virtual addresses, which we
all map to the same physical page, thereby
avoiding noise from the CPU data cache.”

• How?
• Page Table manipulation?

• Why?
• Many Different Physical pages can fit in cache, unless Prefetcher is a concern.

• Aliasing problem
• Same Physical address, different virtual address

