Your state is not mine: a closer
look at evading stateful internet

censorship

Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, Srikanth V
Krishnamurthy

University of California, Riverside

Background

Nowv 13

Times

LISTINGS & GUIDE

Feb ¢

In{

World map showing the status of YouTube blocking

" n Russia

.Has local YouTube verson .Bloc-od

[Acoessare [] Previousy blockes

mn

N

rermet comsoratvg and survedlance by coentry (2018 | 1T

China's Newest Export: Internet Ce, [ommme [Jueen

Moo~ Not casafed | no data
R
China i teaching other countres how to control the inerret S Ter Sl a e

By Mk © Baten

P A

The Great Fire Wall (GFW)

* A sophisticated censorship tool that performs:

* Deep packet Inspection (DPI

* DNS pollution
* |P blocking, etc

Deep Packet Inspection

* Reconstruct the TCP flow
* Inject RST and RST/ACK packets to both endpoints

* The censor need to maintain TCP Control Block (TCB) for each
connection to track flow state

TCB
Source: A.B.C.D: 1234

Dest: C.D.E.F: 80
Client SEQ: 567
Server SEQ:

nd
3

A.B.C.D: 1234 C.D.E.F: 80
"g3388888 [g8888888 ’
ﬁ E-—; i.__;» 7

&S

SYN seq: 567 SYN seq: 567
SYN/ACK seq:123 SYN/ACK seq:123

TCB
Source: A.B.C.D: 1234

Dest: C.D.E.F: 80

Client SEQ: 567
Server SEQ: 123

A.B.C.D: 1234

ACK 123 seq: 568 | GET ACK 123 seq: 568 | GET
/OpenVPN HTTP/1.1\.. /OpenVPN HTTP/1.1\...

Challenges for DPI

* Diversity in host information -> Different TCP standards

* Diversity in network information -> No knowledge of packet losses

* Presence of middleboxes
-> Packets might be altered/dropped by middleboxes after DPI process

=> Impossible to maintain an accurate state of a connection
Client can disrupt the state maintained by GFW

Existing Evading
Strategies

-
TCB Creation —_—

Chent GFVJ Server
] (bad SEQ)

* Assumption: GFW creates a TCB It 4 S —nd Fake SYN
upon seeing a SYN packet. \-_ cvn
 Strategy: |
* The client can send a SYN NACK fa— |
insertion packet with a fake SEQ \'__ ek
to create a false TCB on the GFW
* Then build the real connection.

Data Reassembly

e OQut-of-order data overlapping

* Assumption:
* Two out-of-order IP fragments: the GFW prefers the former and discards the latter.
* Two out-of-order TCP fragments: the GFW prefers the latter

 Strategy:
* Leave a gap in the data stream

* Send 2 packets for that gap, one containing random data, the other containing real data

IP Offset 20, length 10 content:...

IP Offset 0, length 10 content:...

IP Offset 10, length 10 content: asdfaDFefas _ ;aFk\:/n by

IP Offset 10, length 10 content: SENSITIVE _ lgnored by

GFW

Data Reassembly

* In-order data overlapping

* Assumption:
* two in-order data packets: the GFW accepts the first one

e Strategy: Craft insertion packets that contain junk data to fill the
GFW’s receive buffer, while making them to be ignored by the server

Offset O, length 10 content:...

Offset 10, length 10 content: asdfaDFefas _ Accepted
by GFW

Offset 10, length 10 content: SENSITIVE _ Ignored by

GFW

TCB Teardown

* Assumptions:

* GFW tear down TCB when seeing
RST, RST/ACK, or FIN.

* GFW only creates a TCB upon
seeing a SYN packet

* Strategy: After handshake, send RST
to tear down TCB while making it
ignored by the server

Chent GFW Server
—
[———a| syNn
//
K le—""""]
\
—— {;\— ACK
« ™ FakeRST
Y Y |

Tear down TCB

TCB Teardown

Eva | u atio N Failurel: no reps. from server
Failure2: RST from GFW

w/o sensitive keyword

Strategy Discrepancy - - . .

Fadlure 2 JSuccess Failure 1
No Strategy N/A 2.8% 4 96.8% 98.9% LI%
TTL e Wy 88.9% 95.3% J%
TCB creation with SYN Lir . '8 W P ' e
° Set up Bad shecksum : $8.7% 93.5% 6.5%
Reassembly out-of-order data IP fragments : $3.6% 45.1% 54.9%
Q g cas WY out-of-order datd Ay . . e R
* 11 Vintage points TCP segments 87 : 626% J 928% 7.2%
TTL % 5.7% 3.7% 95.1% 4.9%
3 ISPs, 9 cities Reassembly in-order data | nCk nomoer BT R TITOR 95% g IR 6%
Bad checksum 7.2% % 10.8% 98.4% 1.6%
77 Alexa top global sites No TCP flag sanfl s iz f o 2.9%
TCB teardown with RST I'TL 73.2% : 23.6 94.7% 5.3%
HTTP requests i i Bad checksum 2 203% || 89.5% 10.5%
ey — I TTL 73.1% 3.2% 23.7% 97.1% 2.9%
Sensitive keyword: ABRENeR Wi ISUAY pad chechmm 3.9% 29.2 98.2 1.8%
UltraSU rf TCB teardown with FIN I - k ‘3 ‘»)') " o
Bad checksum . 90.7 99.0y 1.0%

e Observation:

Packets with real data are New GFW behaviors,
dropped by middleboxes, inserted packets

e GFW has evolved

* Heterogenous: Old model still
exists sever side implementation, dropped by

topology changes etc. middleboxes

New Behaviors

New TCB upon SYN/ACK

* Prior Assumption: GFW creates a TCB only upon seeing a SYN packet.

* New behavior: GFW creates a TCB not only upon receiving SYN
packets, but also SYN/ACK packets.

e TCB creation won’t work

Re-synchronization State

* Prior Assumption: the GFW creates TCB with SEQ in the first SYN

* New Behavior: Enter re-synchronization state upon seeing:

* Multiple SYN from client side or
* Multiple SYN/ACK from server side or

* SYN/ACK with incorrect ACK
* ARST or RST/ACK packet (instead of tear down TCB)

* The GFW updates client SEQ using next:

e SEQin client to server packet or
* ACK number in SYN/ACK from server to client

e TCB teardown won’t work

New Evading Strategies

TCB Creation + Resync/Desync

* Resync/Desync

1. Perform normal handshake ; "I"'" N "'l“\" ol \I\ ‘ ol \I\ ~ Sewe
2. Send a SYN insertion
packet (Resync)
3. Send a packet containing
an out-of-window SEQ
(Desync)
4. Then send real request
(Ignore by GFW because of
its SEQ)
* Combined Strategy , , , ,
* First, perform TCB Creation to ! :
handle Old GFW mOdE| = Insertion packet for evading old GFW mode

b Then perform ResynC/DesynC p= Insertion packet for evading new GFW model

TCB Teardown + TCB Reversal

* TCB Reversal:
e GFW doesn’t censor server to Cliem INTANG GFW, GFW,.. Server
client traffic I I I I

e GFW assumes SYN/ACK is
sent from server to client and
creates TCB accordingly

* Strategy: Craft a fake
SYN/ACK from the client side
* Combined Strategy

1. Perform TCB Reversal for
new GFW model

2. Then perform TCB
teardown for old model

- = — = Insertion packet for evading old GFW model

. Incartion nackat for sacading neac (W sndal

New Insertion Packets

* All evading methods requires injecting additional packets
* Such packets should only be accepted by the GFW but not the server

* First find insertion packets that would be ignored by the server

* |gnore path Analysis

* Program paths that lead to the packet being discarded or “ignored” without any TCP
state change. E.g. packet with an incorrect checksum

* Could be done with static analysis

* Then use them to probe GFW

TCP State GFW State TCP Flags Condition

Any Any Any IP total length > actual length
Any Any Any TCP Header Length < 20

Any An Any TCP checksum incorrect

SYN RECV ESTABLISHED/RESYNC RST+ACK Wrong acknowledgement number

SYN _REC V/ES'I'ABLISHLD bbTABleHhD/Rl;bYNC ACK Wrong acknowledgement number

n; " : No flag packet with no Hag Not dropped by any
SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC FIN TCP packet with only FIN flag | iqdlebox

SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC ACK Timestamps too old
Table 3: Discrepancies between GFW and server on ignoring packets - candidate insertion packets

Packet Type TTL MD5 Bad ACK Timestamp

SYN v
RST v /
Data / / / v

Table 5: Preferred construction of insertion packets

INTANG

* Measurement driven censorship
evasion tool

* Chooses strategy based on
historical measurement results

* Could work with any protocol as
long as the IP is not blocked

pac'iun
Stuleqy J- f
oy Cache
) Operator

&7*07/

Transient
- o—Main Theead Cache
Cache , (Teme Thread
' senstrve) (Deferrable)

DNS Thread
(Deferrable)

“ DNS
Forwarder

> & ! Ce ‘ Redis Server
» Asynchvonous Call ! (Persistent Cache)

Figure 2: INTANG and its components

OS/Netwc

pplicaty

Evaluation

) Success Failure 1 Failure 2

Vantage Points Strategy Min Max _Ave Min Max Avg Min Max Avg
Improved TCB Teardown 892% 98.2% 1.7% 6% 3.1% 00% 54% LI%

Inside China Improved In-order Data Overlapping 867% 97.1% 29% 89% 44% 00% 52% 1LI1%
TCB Creation + Resync/Desync 885% 98.1% 19% 70% 33% 00% 55% L1%

TCB Teardown + TCB Reversal 920.2% 98.2% 1.7% 56% 26% 00% 57% L1L1%

INTANG Performance 937% 100.0% 00% 30% 09% 00% 35% 06%

Improved TCB Teardown 856% 929% 898% 46% 7T6% 68% 03% 6383% 35%

Outside China 1MProved In-order Data Overlapping 894% 96.0% 927% 13% 62% 3.6% 06% 70% 37%
TCB Creation + Resync/Desync TEIN 956% 846% 24% 186% 129% 09% 40% 2.6%

TCB Teardown + TCB Reversal 846% 93.1% 895% 55% 8% 7.1% 01% 79% 33%

Table 4: Success rate of new strategies

* Better performance than previously existing strategies
* Reasons for failure 1: Misbehaved servers/middleboxes, inaccurate TTL

INTANG with DNS

DNS resolver [P except Tianjin All
Dyn 1 216.146.35.35 98.6% 92.7%
Dyn 2 216.146.36.36 99.6% 93.1%

Table 6: Success rate of TCP DNS censorship evasion

INTANG with Tor

e Background: GFW performs passive traffic analysis and begins active
probing after a Tor connection established from China

e Results:

* W/o INTANG: Hidden bridge nodes triggers active probing and are
immediately blocked

* W/ INTANG: 100% success rate during a 9-hour-experiment-period

Conclusion

* Takeaway

e GFW and censorship is evolving
* GFW is heterogeneous with different co-existing versions
* ITANG could be used to hide VPN/Tor nodes

* Limitation
e Can’t help with IP level blocking

* Discovering new strategies and insertion packets requires manual force
 Can’t hide connection destination

Thank you!

