
FLEXDROID: Enforcing In-
App Privilege Separation in

Android
Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, Insik Shin

(NDSS ‘16)

Presented by Shivansh Chandnani
CS 563 (Fall 2018)

3rd party libraries are very popular in
Android

Can we trust these third party
libraries?

Fundamental Problem

Third party libraries in Android have the same
access to permissions as the host app

How can this lead to problems?

Results from analysis of 100,000 apps:

Thoughts about threat model?

Solution

In-app privilege separation between a host
application and it’s third party libraries

Main challenges

• From the analysis of 295 libraries amongst
the 100,000 apps

– Class inheritance => 71.5%

– Java Native Interface => 17.1%

– Runtime class loading => 27.9%

– Reflection => 49.6%

• From the 20 most popular
third party libraries:
– 19 use class inheritance

– All use atleast one form of
dynamic code exection

JNI

• Java Native Interface

• Allows developers to use libraries in
native language

• Could improve an app’s performance

• Renders memory safety features of Java
obsolete

Runtime class loading

Source: http://tutorials.jenkov.com/java-reflection/dynamic-class-loading-reloading.html

Reflection

Source: https://en.wikipedia.org/wiki/Reflection_(computer_programming)

Key Idea

Adjusting permissions dynamically
whenever an app requests a resource

FLEXDROID Design

• Identify the principle using stack tracer
• Protect the integrity of the stack trace

using tamper resistant memory protection
mechanism

• Handle dynamic code execution
• Are there any alternate designs you think

would be more reliable or easier to
implement?

Stack tracer

• New special purpose thread for each
process

• Uses secure transmission for data

• Amidst the initialization process of an app

Memory isolation

• Inspired by ARMLock (CCS ‘14)

• Regard JNI code as potentially malicious
code
– Run it in a separate and restricted memory

domain

Protection against dynamic
techniques

• Store the context of class loader

• Store the parent thread’s permissions in
case of threads

• Basic idea: Use dynamic permissions with
context at runtime and creation

Code modified
• Experiments performed on Android 4.4.4. Had 40% market share in 2015.

• Dalvik replaced with Android Runtime (ART) in Android 5.0. Should
the authors have used a different android version to test?

Evaluation

• Evaluated 32 top apps across categories
• Ran for 10 minutes in both stock android

and FLEXDROID.
• 5 apps crashed: Waze, Uber, Acrobat

Reader, Facebook and UC Browser

• Is it necessary for a security modification
to be backwards compatible?

Usability

• Recompiled apps with flexdroid tag to black third party library’s access
• Is this convincing enough that FLEXDROID works as expected?

• How about dynamic code execution?

Performance Overhead

• Seems to add very little overhead
• Any better way to measure performance overhead?

Micro-benchmarks
• File open and delete have

performance overheads as
high as 100%.

• JNI methods have very high
overhead.

• Does this mean the
benchmarks with K-9 email
app were biased?

Key Takeaways

• Android permission system has a fundamental
problem with 3rd party libraries

• Third party libraries are using more data than
they inform the developer about

• FLEXDroid allows to separate the app’s trust
from its libraries

Discussion

• How does this change with runtime permissions?
• Do the sweeping changes required in popular apps

disincentivize google to adopt these changes?
• Better to provide fake data or no data?

• Thoughts on how their performance evaluation could be
more convincing?

