cs579: Computational Complexity Assigned: Mon., Feb. 19, 2018

Problem Set #3

Prof. Michael A. Forbes Due: Mon., Mar. 5, 2018 (3:30pm)

1. Define FACTORING = $\{\langle a, b, n \rangle : n \text{ has a prime factor in the interval } [a, b] \}$. For this problem you may assume that there is a deterministic polynomial time primality test, that is, PRIMES \in P, so that primality of a number n can be decided in $\operatorname{poly}(\lg n)$ time as a number n is represented by $O(\lg n)$ bits. Show that

- (a) If you can factor integers deterministically in polynomial time, then $FACTORING \in P$.
- (b) If $FACTORING \in P$, then you can factor numbers deterministically in polynomial time.
- (c) Show that $FACTORING \in NP \cap coNP$.
- (d) Show that if FACTORING is NP-hard then NP = coNP and hence the polynomial hierarchy collapses to PH = NP.

Thus, the above suggests that even though factoring integers is not known to be in P, it is also not expected to be NP-hard. As such, FACTORING is a candidate NP-intermediate problem (which unconditionally (under $P \neq NP$) exist due to Ladner's Theorem).

- 2. Show that if $NP \subseteq BPP$ then NP = RP.
- 3. (Multiplicative Chernoff Bound). Let X_1, \ldots, X_n be independent random variables taking values over [0, 1]. Let $X = \sum_i X_i$. Show that
 - (a) For $r \in (-\infty, \ln 2]$, prove that $\mathbb{E}[e^{rX}] \leq e^{r\mathbb{E}[X] + r^2\mathbb{E}[X]}$, where you may use-without-proof that $1 + x \leq e^x \leq 1 + x + x^2$ for such r.
 - (b) Explain how the above used the independence of the X_i .
 - (c) Apply Markov's inequality $(\Pr[Y \ge a] \le \mathbb{E}[Y]/a)$ to e^{rX} , and optimize over r, to conclude that
 - i. For $0 \le \epsilon \le \ln 4$, $\Pr[X \ge (1 + \epsilon)\mathbb{E}[X]] \le e^{-\epsilon^2 \mathbb{E}[X]/4}$
 - ii. For $\epsilon \ge \ln 4$, $\Pr[\mathsf{X} \ge (1+\epsilon)\mathbb{E}[\mathsf{X}]] \le 2^{-\epsilon\mathbb{E}[\mathsf{X}]/2}$
 - iii. For $0 \le \epsilon \le 1$, $\Pr[X \le (1 \epsilon)\mathbb{E}[X]] \le e^{-\epsilon^2 \mathbb{E}[X]/4}$
 - iv. (Additive Chernoff Bound) For $\epsilon \geq 0$, $\Pr[|\mathsf{X} \mathbb{E}[\mathsf{X}]| \geq \epsilon \cdot n] \leq 2\mathrm{e}^{-\epsilon^2 n/4}$

Note that the additive Chernoff bound suffices for BPP amplification, but the multiplicative bound is in general stronger and sometimes needed (e.g. consider $\mathbb{E}[X] = \lg n$ and the resulting bound for $\Pr[X \ge 2\mathbb{E}[X]]$).

4. (Arora-Barak Problem 6.5) Show that for every constant $c \ge 1$ there is a language in PH that requires circuits of size $\Omega(n^c)$.

Some hints.

4. Where have we seen languages that require large circuits? How can I debate you to prove I am computing such a language? What if there are multiple such languages? Obtain such a language in $\Sigma^4 P$.