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Internet of Things (IoT)
Smart Home

Smart City

Embedded & Mobile Devices
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Deep Learning
Speech Recognition

Object Detection

Activity Recognition
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Recap: Fully-connected neural network
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Sigmoid: g(t) =
1

1+ e- t

•Can learn nonlinear functions provided each
perceptron has a differentiable nonlinearity



Recap: Fully-connected neural network
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image Fully connected layer

From fully connected to convolutional
networks
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Recap: Recurrent neural network
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Challenges
Deep learning for sensor-rich IoT systems.

Deep learning for resource-constrained IoT systems.

Deep learning for reliable IoT systems.

Deep learning for label-limited IoT systems.
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Sensor-rich IoT systems
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Resource-constrained IoT systems
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Reliable IoT system
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Label-limited IoT system
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About 1 million people work as
full-time or part-time data labellers



Outline
DeepSense: A unified deep learning framework for time-series mobile sensing
data processing. (WWW 2017)

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty
Estimations. (Ubicomp 2018)

DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems
with a Compressor-Critic Framework. (SenSys 2017)
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Challenges
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Sensor Input: noisy physical quantity

Noise Model

Physical Rule
Out: clean target physical quantity



Challenges
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Sensor Input: noisy physical quantity

Noise Model

Physical Rule
Out: noisy target physical quantity

Nonlinear
Time-dependent



Challenges
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Sensor Input

Hand-crafted
features

Classifier



Challenges
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Sensor Input

Hand-crafted
features

Classifier

Time-consuming
Not Robust



Hand-crafted features
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DeepSense: a Unified Model
A deep learning model that models different types of
mobile sensing applications in a unified manner.
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DeepSense: a Unified Model
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Sensor Input

DeepSense

DeepSense

A learnable complex nonlinear functions:
composition of physical system and noise model

An automatic feature extractor
and classifier



DeepSense: Properties

Target physical quantity
◦ Multiple sensor inputs (input physical

quantities).

◦ Physical rules involve single quantity.

◦ Physical rules involve multiple quantities.

◦ Physical rules involve time.
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 Target classes
 Multiple sensor inputs.

 Local features within each sensor input.

 Global features that fuse multiple senor
inputs.

 Temporal dependencies.

 DeepSense
 Interactions with single sensor.

 Interactions with multiple sensors.

 Interactions along time.
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Recap: Convolutional neural networks



Recap: Recurrent neural network
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DeepSense: Network Structure
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Final Structure
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DeepSense: Customization
Most Structure is pre-defined with default values.

For a particular mobile sensing task, you need only to define:
◦ Number of sensor inputs.

◦ Input/output dimension.

◦ Regression/classification.

More customization:
◦ Objective function for training.
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Evaluation Tasks
Car tracking with motion sensors (CarTrack)
◦ Regression Based

◦ GPS is unavailable in underground road

◦ Sensing error will be accumulated and there is no additional signal to erase the error

◦ The capability of DeepSense of learning physical rules for noisy sensor data.

Heterogeneous Human activity recognition (HHAR)
◦ Classification Based

◦ State-of-the-art algorithms do not generalize well for a new user who does not appear in the training
set

◦ The capability of DeepSense to extract features that generalize well.

User Identification with motion analysis (UserID)
◦ Classification Based

◦ Extend the biometric gait analysis for user identification (walking, biking, stairing up/down, sitting,
and standing)

◦ The capability of DeepSense to extract features that differentiate well.
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Evaluation Baselines
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Testing Platform
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CarTrack: Accuracy

MAE (meter) Map-Aided Track

DeepSense 40.43 ± 5.24 93.8%

DS-SingleGRU 44.97 ± 5.80 90.2%

DS-noIndvConv 52.15 ± 6.24 88.3%

DS-noMergeConv 53.06 ± 6.59 87.5%

Sensor-fusion 606.59 ± 56.57

eNav (w/o GPS) 6.7%
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CarTrack: Examples
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CarTrack: Running time & Energy
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HHAR: Accuracy
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HHAR: Running time & Energy
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UserID: Accuracy
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UserID: Running time & Energy
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Code available
https://github.com/yscacaca/DeepSense
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Outline
DeepSense: A unified deep learning framework for time-series mobile sensing
data processing. (WWW 2017)

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty
Estimations. (Ubicomp 2018)

DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems
with a Compressor-Critic Framework. (SenSys 2017)
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Motivations
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Background: Dropout as Bayesian
Approximation (MCDrop)
Dropout operation convert a deterministic neural network into a probabilistic
neural network
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It has been proven that dropout
training in deep neural networks
is an approximate Bayesian
inference in deep Gaussian
processes.

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning."
international conference on machine learning. 2016.



Background: Dropout as Bayesian
Approximation (Underestimate)
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Gaussian process with SE covariance function

Dropout using uncertainty information (5 hidden layers, ReLU non-linearty)



Background: Model Ensemble with Log
Likelihood (SSP)
Train neural networks with NLL (Negative Log-Likelihood) instead of
MSE (Mean Square Error).

Tend to overestimate.
�

�
� �

���
�
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Enlarging variance at the beginning of training can easily reduce NLL

Large at the beginning of training



RDeepSense: Balancing the Bias Variance
Tradeoff
Design an objective function that balances the underestimation and
overestimation:

�

�
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Proved that dropout training with this object function was equivalent to a
specific deep Gaussian process model.
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NLL: overestimate MSE: underestimate

Hyper-parameter � balances two effects



RDeepSense: Reducing Resource
Consumption
Previous works are based on either sampling or ensemble method, which is
resource consuming.

Use the test-time dropout operation instead of sampling

� � �

� � � �

��� �

This is a biased approximation, but works well in evaluations.
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RDeepSense: Comparasion
Algorithm Dropout

Training
Proper Scoring
Rules

Ensemble
method

Obtain predictive
uncertainty with
single run

RDeepSense ✔ ✔ ❌ ✔

MCDrop ✔ ❌(underestimate) ❌ ❌

SSP ❌ ✔(overestimate) ✔ ❌
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Evaluation: Hardware
Intel Edison
◦ Intel Atom SoC dual-core CPU at 500 MHz

◦ 1GB memory

Run solely on CPU
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Evaluation: Dataset
1. BPEst : Monitor cuffless blood pressure through photoplethysmogram from
fingertip.

2. NYCommute: Estimate commute time in New York City through the pick-up
time and location as well as the drop-off location.

3. GasSen: Estimate real concentration of Ethylene and CO gas mixture from an
array of low-end chemical sensors.
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Evaluation: Baseline Algorithms
1. MCDrop: This algorithm is based on Monte Carlo dropout. We use MCDrop-k
to represent MCDrop with k samples.

2. SSP: Ensemble of multiple neural networks trained with NLL. We use SSP-k to
represent SSP by ensemble k individual neural networks.

3. RDeepSense-MC: This algorithm is basically the proposed RDeepSense
algorithm. The algorithm uses Monte Carlo sampling instead of our proposed
approximation during infernce. We use RDeepSense-MCk to present
RDeepSense- MC with k samples .

4. GP: Gaussian process (GP).
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Evaluation: Reliability Diagrams
1. Compute the z% confidence interval for each testing data based
on predictive mean and variance of each algorithm.

2. Measure the fraction of the testing data that falls into this
confidence interval.

3. For a well-calibrated uncertainty estimation, the fraction of testing
data that falls into the confidence interval should be similar to z%.
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BPEst: MCDrop & RdeepSense
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BPEst: SSP & RDeepSense
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BPEst: RDeepSense
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NYCommute: MCDrop & RDeepSense
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NYCommute: SSP & RDeepSense
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NYCommute: RDeepSense
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GasSen: MCDrop & RDeepSense
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GasSen: SSP & RDeepSense
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GasSen: RDeepSense
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Energy Consumption: BPEst
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Energy Consumption: NYCommute
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Energy Consumption: GasSen
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Effect of hyper-parameter α
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