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Internet of Things (1oT)

Smart Home

Embedded & Mobile Devices

Smart City




Deep Learning
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Recap: Fully-connected neural network

Input Hidden Layer Output . . .
Layer Layer Can learn nonlinear functions provided each

perceptron has a differentiable nonlinearity
Input #1 —»=

Input #2 —=

1
l+e

Input #3 —- sigmoid: g(t)=

—t




Recap: Fully-connected neural network

. hidden layer 1  hidden layer 2 hidden layer 3
input layer
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From fully connected to convolutional
networks

image Fully connected layer




Convolutional neural networks

image Convolutional layer



Convolutional neural networks
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image Convolutional layer



Convolutional neural networks
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Recap: Recurrent neural network
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Challenges

Deep learning for sensor-rich loT systems.

Deep learning for resource-constrained loT systems.
Deep learning for reliable 10T systems.

Deep learning for label-limited loT systems.



Sensor-rich loT systems




Resource-constrained loT systems

Low Battery
20% battery remaining.

Low Power Mode

Close

" Why is my phone so slow?




Reliable loT system




Label-limited 10T system

About 1 million people work as
full-time or part-time data labellers




Outline

DeepSense: A unified deep learning framework for time-series mobile sensing
data processing. (WWW 2017)

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty
Estimations. (Ubicomp 2018)

DeeploT: Compressing Deep Neural Network Structures for Sensing Systems
with a Compressor-Critic Framework. (SenSys 2017)



Outline

DeepSense: A unified deep learning framework for time-series mobile sensing
data processing. (WWW 2017)




Challenges

Noise Model

Physical Rule

Sensor Input: noisy physical quantity Out: clean target physical quantity




Challenges

Nonlinear
Time-dependent

Noise Model

Physical Rule

Sensor Input: noisy physical quantity Out: noisy target physical quantity




Challenges

Hand-crafted

Classifier
features

Sensor Input




Challenges

Hand-crafted

Classifier
features

Time-consuming
Not Robust

Sensor Input




Hand-crafted features

Table 7 Summary of classification of time-domain techniques regarding computational costs, storage requirements, and precision (double/
single/int)

Time-domain metric Ref(s) Comp. cost Storage req. Precision Mobile device
Mean 5, 27, 50, 591 Very low Very low Single/int Yes
Std. deviation 15, 22, 23, 30, 59] Very low Very low Double/singie Yes
Median 2, 3] Medium Very low Single/int Yes
Range [11] Very low Very low Single/int Yes
Maximum [4, 591 Very low Very low Singiefint Yes
Minimum Table 9 Sum' s Very low Very low Single/int Yes
RMS (Couble/s mary of clagg; Very low Very low Double/single Yes
1ng1e/ lassificar:
Integration S ) 4ton of sy, .- Very low Double/single Yes
trmg'domam ‘mboljc strin ble/

Correlation “ g-domaip technj Double/single Moderate
Cross—corre]"'MmmUm dist Ref(s 1ques regarg; -+ -taingle Moderate
Diff vensh - “istance ) P N8 compuytayi -

erences i —— —— Comp - 0] -
Zle T nce‘ tein [31 ] 1P. cost ) nal costg storage

r0-CrOSS Orage requirer-
SMA _\ [14] StOrage req. Hlents, ang preci
181
SVM [46] Low Precisiop o
Med;j M, -
DSVM [19] edium Mediyy, ~~~~~~Im Mobile devyjce
Yes
Moderate




DeepSense: a Unified Model

A deep learning model that models different types of
mobile sensing applications in a unified manner.




DeepSense: a Unified Model

A learnable complex nonlinear functions:
composition of physical system and noise model

Sensor Input

An automatic feature extractor
and classifier




DeepSense: Properties

Target physical quantity = Target classes
Multiple sensor inputs (input physical = Multiple sensor inputs.
quantities).
Physical rules involve single quantity. = Local features within each sensor input.
Physical rules involve multiple quantities. = Global features that fuse multiple senor
Physical rules involve time. inputs.

= Temporal dependencies.

= DeepSense
= Interactions with single sensor.
= Interactions with multiple sensors.
= Interactions along time.



Recap: Convolutional neural networks
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Recap: Recurrent neural network
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DeepSense: Network Structure

Global Conv Global Conv Global Conv

Sensor 1 Sensor 2 Sensor 1 Sensor 2 Sensor 1 Sensor 2




Fipal Structure ., . ., |

Single/Multiple Outputs {

Type-Specific Output Layer
Recurrent Layer 2

Recurrent Layer 1

Flatten & Concatenation

Merge Convolutional Layer 3

Merge Convolutional Layer 1

Flatten & Concatenation
Individual Convolutional Layer 3

Individual Convolutional Layer 2
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DeepSense: Customization

Most Structure is pre-defined with default values.

For a particular mobile sensing task, you need only to define:
Number of sensor inputs.
Input/output dimension.
Regression/classification.

More customization:
Objective function for training.



Evaluation Tasks

Car tracking with motion sensors (CarTrack)
Regression Based
GPS is unavailable in underground road
Sensing error will be accumulated and there is no additional signal to erase the error
The capability of DeepSense of learning physical rules for noisy sensor data.

Heterogeneous Human activity recognition (HHAR)
Classification Based
State-of-the-art algorithms do not generalize well for a new user who does not appear in the training
set
The capability of DeepSense to extract features that generalize well.

User Identification with motion analysis (UserlID)
Classification Based
Extend the biometric gait analysis for user identification (walking, biking, stairing up/down, sitting,
and standing)




Evaluation Baselines

Global Conv Global Conv Global Conv

Sensor 1 Sensor 2 Sensor 1 Sensor 2 Sensor 1 Sensor 2




Testing Platform




CarTrack: Accuracy

DeepSense 40.43 +5.24 93.8%
DS-SingleGRU 44.97 £5.80 90.2%
DS-nolndvConv 52.15+6.24 88.3%
DS-noMergeConv 53.06 £ 6.59 87.5%
Sensor-fusion 606.59 + 56.57

eNav (w/o GPS) 6.7%



CarTrack: Examples




CarTrack: Running time & Energy
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HHAR: Accuracy
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HHAR: Running time & Energy
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UserlD: Accq racy
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User|D: Running time & Energy
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Code available

https://github.com/yscacaca/DeepSense




Outline

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty
Estimations. (Ubicomp 2018)




Motivations




Background: Dropout as Bayesian
Approximation (MCDrop

Dropout operation convert a deterministic neural network into a probabilistic
neural network

It has been proven that dropout
training in deep neural networks
is an approximate Bayesian
inference in deep Gaussian
processes.




Background: Dropout as Bayesian
Approximation (Underestimate)

Gaussian process with SE covariance function

Dropout using uncertainty information (5 hidden layers, ReLU non-linearty)



Background: Model Ensemble with Log
Likelihood (SSP)

Train neural networks with NLL (Negative Log-Likelihood) instead of
MSE (Mean Square Error).

Tend to overestimate.
1 1
L10glgd + Zof(y — )2

Large at the beginning of training

Enlarging variance at the beginning of training can easily reduce NLL



RDeepSense: Balancing the Bias Variance
Tradeoff

Design an objective function that balances the underestimation and
overestimation:

(1-a) (Flogo? + 55 v — 7 ) + oy — w7,

}

MSE: underestimate

NLL: overestimate

Hyper-parameter a balances two effects

Proved that dropout training with this object function was equivalent to a
specific deep Gaussian process model.



RDeepSense: Reducing Resource
Consumption

Previous works are based on either sampling or ensemble method, which is
resource consuming.

Use the test-time dropout operation instead of sampling
W, = diag(p)W,
yi = x W, + b
x141 = f ()

This is a biased approximation, but works well in evaluations.



RDeepSense: Comparasion

Algorithm Dropout Proper Scoring Ensemble
Training Rules method

Obtain predictive

uncertainty with

RDeepSense v v X

MCDrop v X (underestimate) X

SSP X v (overestimate)

single run




Evaluation: Hardware

Intel Edison
Intel Atom SoC dual-core CPU at 500 MHz

1GB memory

Run solely on CPU




Evaluation: Dataset

1. BPEst : Monitor cuffless blood pressure through photoplethysmogram from
fingertip.

2. NYCommute: Estimate commute time in New York City through the pick-up
time and location as well as the drop-off location.

3. GasSen: Estimate real concentration of Ethylene and CO gas mixture from an
array of low-end chemical sensors.



Evaluation: Baseline Algorithms

1. MCDrop: This algorithm is based on Monte Carlo dropout. We use MCDrop-k
to represent MCDrop with k samples.

2. SSP: Ensemble of multiple neural networks trained with NLL. We use SSP-k to
represent SSP by ensemble k individual neural networks.

3. RDeepSense-MC: This algorithm is basically the proposed RDeepSense
algorithm. The algorithm uses Monte Carlo sampling instead of our proposed
approximation during infernce. We use RDeepSense-MCk to present
RDeepSense- MC with k samples.

4. GP: Gaussian process (GP).



Evaluation: Reliability Diagrams

1. Compute the z2% confidence interval for each testing data based
on predictive mean and variance of each algorithm.

2. Measure the fraction of the testing data that falls into this
confidence interval.

3. For a well-calibrated uncertainty estimation, the fraction of testing
data that falls into the confidence interval should be similar to z%.




BPEst: MCDrop & RdeepSense
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BPEst: SSP & RDeepSense
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BPEst: RDeepSense
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NYCommute: MCDrop & RDeepSense
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NYCommute: SSP & RDeepSense
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NYCommute: RDeepSense
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GasSen: MCDrop & RDeepSense
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GasSen: SSP & RDeepSense

1

08 — i -, R f

0.6/

= = =Optimal
== SSP-1
== SSP-3
== SSP-5
SSP-10
—+=GP
—f—=RDeepSense

0.8 1

04

0.2




GasSen: RDeepSense
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Energy Consumption: BPEst
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Energy Consumption: NYCommute
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Energy Consumption: GasSen
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