
Deep Learning Challenges for
the Internet of Things

0

Shuochao Yao

Outline
DeepSense: A unified deep learning framework for time-series mobile sensing data processing.
(WWW 2017)

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations. (Ubicomp
2018)

DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-
Critic Framework. (SenSys 2017)

1

Existing solutions
Weight Pruning
◦ Magnitude-based method
◦ Iterative pruning + Retraining

◦ Pruning with rehabilitation

Quantization method

DeepIoT: Structure compression

2

Magnitude-based method: Iterative
Pruning + Retraining
Pruning connection with small magnitude.

Iterative pruning an re-training.

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit SRAM Memory 640 6400

Magnitude-based method: Iterative
Pruning + Retraining

Magnitude-based method: Iterative Pruning +
Retraining (Experiment: Overall)

Network Top-1 Error Top-5 Error Parameters Compression Rate

LeNet-300-100 Ref 1.64% - 267K
12X

LeNet-300-100 Pruned 1.59% - 22K

LeNet-5 Ref 0.80% - 431K
12X

LeNet-5 Pruned 0.77% - 36K

AlexNet Ref 42.78% 19.73% 61M
9X

AlexNet Pruned 42.77% 19.67% 6.7M

VGG-16 Ref 31.50% 11.32% 138M
13X

VGG-16 Pruned 31.34% 10.88% 10.3M

Magnitude-based method: Iterative
Pruning + Retraining (Experiment: Lenet)

Layer Weights FLOP Act% Weights% FLOP%

fc1 235K 470K 38% 8% 8%

fc2 30K 60K 65% 9% 4%

fc3 1K 2K 100% 26% 17%

Total 266K 532K 46% 8% 8%

Lenet-300-100

Lenet-5
Layer Weights FLOP Act% Weights% FLOP%

conv1 0.5K 576K 82% 66% 66%

conv2 25K 3200K 72% 12% 10%

fc1 400K 800K 55% 8% 6%

fc2 5K 10K 100% 19% 10%

Total 431K 4586K 77% 8% 16%

Magnitude-based method: Iterative Pruning +
Retraining (Experiment: AlexNet)

Layer Weights FLOP Act% Weights% FLOP%

conv1 35K 211M 88% 84% 84%

conv2 307K 448M 52% 38% 33%

conv3 885K 299M 37% 35% 18%

conv4 663K 224M 40% 37% 14%

conv5 442K 150M 34% 37% 14%

fc1 38M 75M 36% 9% 3%

fc2 17M 34M 40% 9% 3%

fc3 4M 8M 100% 25% 10

Total 61M 1.5B 54% 11% 30%

Magnitude-based method: Iterative Pruning +
Retraining (Experiment: Tradeoff)

Pruning with rehabilitation: Dynamic
Network Surgery (Formulation)
min
��,��

� ��⨀�� �. �. ��
(�,�) = ℎ� ��

(�,�) , ∀ �, � ∈ �

◦ ⨀ is the element-wise product. � � is the loss function.

DNS updates only��. �� is updated based on ℎ� � .

ℎ� ��
(�,�) =

0 �� ≥ ��
(�,�)

��
(�,�) �� ≤ ��

(�,�) ≤ ��

1 �� ≤ ��
(�,�)

◦ �� is the pruning threshold. �� = �� + �, where � is a pre-defined small margin.

Pruning with rehabilitation: Dynamic
Network Surgery (Algorithm)
1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.

3. Update �� based on ℎ� � .

4. Update�� based on back-propagation.

5. Iterate to step 3.

Pruning with rehabilitation: Dynamic
Network Surgery (Experiment on LeNet)

Model Layer Parameters Parameters (DNS)

LeNet-5

conv1 0.5K 14.2%

conv2 25K 3.1%

fc1 400K 0.7%

fc2 5K 4.3%

Total 431K 0.9%

LeNet-300-100

fc1 236K 1.8%

fc2 30K 1.8%

fc3 1K 5.5%

Total 267K 1.8%

Pruning with rehabilitation: Dynamic
Network Surgery (Experiment on AlexNet)

Layer Parameters Parameters (DNS)

conv1 35K 53.8%

conv2 307K 40.6%

conv3 885K 29.0%

conv4 664K 32.3%

conv5 443K 32.5%

fc1 38M 3.7%

fc2 17M 6.6%

fc3 4M 4.6%

Total 61M 5.7%

Existing solutions
Weight Pruning

Quantization method
◦ Fully Quantization
◦ Fixed-point format

◦ Code book

◦ Quantization with full-precision copy

DeepIoT: Structure Compression

13

Fully Quantization: Fixed-point format
Limited Precision Arithmetic
◦ ��.�� , where �� and �� correspond to the integer and the fractional part of the number.

◦ The number of integer bits (IL) plus the number of fractional bits (FL) yields the total number of bits
used to represent the number.

◦ WL = IL + FL.

◦ Can be represented as ��,�� .

◦ ��,�� limits the precision to FL bits.

◦ ��,�� sets the range to −2����, 2���� − 2��� .

Fully Quantization: Fixed-point format
(Rounding Modes)
Define � as the largest integer multiple of � = 2���.

Round-to-nearest:

◦ ����� �, ��,�� = �
� � ≤ � ≤ � +

�

�

� + � � +
�

�
≤ � ≤ � + �

Stochastic rounding (unbiased):

◦ ����� �, ��,�� = �
� �. �. 1 −

�� �

�

� + � �.�.
�� �

�

If � lies outside the range of ��,�� , we saturate the result to either the lower or the upper
limit of ��,�� :

Fully Quantization: Fixed-point format
(Experiment on MNIST with fully connected
DNNs)

Fully Quantization: Fixed-point format
(Experiment on MNIST with CNNs)

Fully Quantization: Fixed-point format
(Experiment on CIFAR10 with fully connected
DNNs)

Fully Quantization: Code book
Quantization using k-means
◦ Perform k-means to find k centers �� for weights �.

◦ ���
� = �� where min

�
��� − ��

�
.

Product Quantization
◦ � = ��,��, ⋯ ,�� .

◦ Perform k-means for elements in �� to find k centers ��
� .

◦ ��
�� = ��

� where min
�

��
� − ��

� �
.

Residual Quantization
◦ Quantize the vectors into k centers.

◦ Then recursively quantize the residuals.

Fully Quantization: Code book
(Experiment on PQ)

Fully Quantization: Code book

Existing solutions
Weight Pruning

Quantization method
◦ Fully Quantization

◦ Quantization with full-precision copy
◦ Binnaryconnect

◦ BNN

DeepIoT: Structure compression

22

Quantization with full-precision copy:
Binaryconnect
Use only two possible value (e.g. +1 or -1) for weights.

Replace many multiply-accumulate operations by simple accumulations.

Fixed-point adders are much less expensive both in terms of area and energy than fixed-point
multiply-accumulators.

Quantization with full-precision copy:
Binaryconnect (Binarization)
Deterministic Binarization:

◦ �� = �
+1 �� � ≥ 0

−1 ��ℎ������

Stochastic Binarization:

◦ �� = �
+1 ���ℎ ����������� � = � ��

−1 ���ℎ ����������� 1 − �

◦ � � = ����
���

�
, 0, 1 = ��� 0,��� 1,

���

�

Stochastic binarization is more theoretically appealing than the deterministic one, but harder to
implement as it requires the hardware to generate random bits when quantizing.

Quantization with full-precision copy:
Binaryconnect
1. Given the DNN input, compute the unit activations layer by layer, leading to the top layer
which is the output of the DNN, given its input. This step is referred as the forward propagation.

2. Given the DNN target, compute the training objective’s gradient w.r.t. each layer’s activations,
starting from the top layer and going down layer by layer until the first hidden layer. This step is
referred to as the backward propagation or backward phase of back-propagation.

3. Compute the gradient w.r.t. each layer’s parameters and then update the parameters using
their computed gradients and their previous values. This step is referred to as the parameter
update.

Quantization with full-precision copy:
Binaryconnect
BinaryConnect only binarize the weights during the
for- ward and backward propagations (steps 1 and 2)
but not during the parameter update (step 3).

Quantization with full-precision copy:
Binaryconnect

Quantization with full-precision copy:
Binaryconnect

Quantization with full-precision copy:
Binarized Neural Networks
Neural networks with binary weights and activations
at run-time and when computing the parameters’
gradient at train time.

Quantization with full-precision copy:
Binarized Neural Networks
Propagating Gradients Through Discretization (“straight-through estimator ”)
◦ � = ���� �

◦ Estimator �� of the gradient
��

��

◦ Straight-through estimator of
��

��
:

◦ �� = ��1 � ��

◦ Can be viewed as propagating the gradient through hard tanh

Replace multiplications with bit-shift
◦ Replace batch normalization with shift-based batch normalization

◦ Replace ADAM with shift-based AdaMax

Quantization with full-precision copy:
Binarized Neural Networks

Quantization with full-precision copy:
Binarized Neural Networks

Operation MUL ADD

8bit Integer 0.2pJ 0.03pJ

32bit Integer 3.1pJ 0.1pJ

16bit Floating Point 1.1pJ 0.4pJ

32bit Floating Point 3.7pJ 0.9pJ

Memory size 64-bit memory access

8k 10pJ

32k 20pJ

1M 100pJ

DRAM 1.3-2.6nJ

Quantization with full-precision copy:
Binarized Neural Networks

Existing solutions
Weight Pruning

Quantization method

DeepIoT: Structure Compression

34

Previous Solutions

35

Magnitude-Based Pruning

Deleting Weights

Problem: Inefficiency in Spare Matrix
1. Need to record both indices and values for non-zero elements (≥✖3 memory consumption).

2. The multiplication between a matrix (m✖k) with 1% of nonzero elements and a vector (k✖1)

How to efficiently convert “theoretical” reduction in the number of parameters
into “practical” system improvements?

36

m k Time(Sparse_matmul/Dense_matmul)

100 100 51.7%

100 1000 29.1%

1000 100 33.6%

1000 1000 11.7%

DeepIoT: Intuition

37

Deciding the optimal number of elements in each layer (structure).

Deleting Neurons

DeepIoT: CNNs and RNNs

38

W W W W

DeepIoT: The Properties We Prefer
1. Can recover the previous pruned elements.

2. Not prune elements just based on magnitudes but on parameter
redundancies.

3. Have a global view of parameter redundancies.

39

DeepIoT: Ability to Recover

40

Dropout

Stochastically prune hidden elements based on pre-
defined dropout probability to generate a “thinned”
structure during training.

If we have the “optimal” dropout probabilities for each
element, we can obtain the “optimal” slim structure for
compression.

The stochastical pruning during the compression process
provides DeepIoT the ability to “recover” based on the
learnt dropout probability.

Dropout probability: 0.5

DeepIoT: Learning Parameter
Redundancies

41

Parameters

Dropout Probabilities to Learn

DeepIoT: Global Views of Parameter
Redundancies

42

Parameters (W) Dropout Probabilities to Learn (z)

RNN

RNN

RNN

Critic Compressor
�~��(�)��(�|�)

DeepIoT: Compressor-Critic Framework

43

� �

�~ �,� �

Iteratively train Compressor and Critic neural networks

� � � �

�

�~�� � �

� � � �

� � � �

�

� � � �

�

�~�� � � �

� � � � �

DeepIoT: Evaluation
Intel Edison Platform.

Run solely on CPU.

No additional runtime optimization.

All models use 32-bit floats without any quantization.

44

DeepIoT: Performance Overview

Model Size (MB) Time (ms) Energy (mJ)

LeNet5 1.72/0.04/97.6% 50.2/14.2/71.4% 47.1/12.5/73.5%

VGGNet 118.8/2.9/97.6% 1.5K/82.2/94.5% 1.7K/74/95.6%

Bi-LSTM 76.0/7.59/90.0% 71K/9.6K/86.5% 62.9K/8.1K/87.1%

DeepSense-HHAR 1.89/0.12/93.7% 130/36.7/71.8% 99.6/27.7/72.2%

DeepSense-UserID 1.89/0.02/98.9% 130/25.1/80.7% 105.1/18.1/82.8%

45

Original/Compressed/Compression Ratio

DeepIoT: Baseline Algorithms
1. DyNS：
◦ A magnitude-based network pruning algorithm.

◦ It retrains the network connections after each pruning step and has the ability to recover the pruned
weights.

2. SparseSep:
◦ A sparse-coding and factorization based algorithm.

◦ Simplifies the fully-connected layer by finding the optimal code-book and code based on a sparse
coding technique.

◦ Simplifies convolutional layer by matrix factorization

3. DyNS-Ext:
◦ Enhance and extend the magnitude-based method used in DyNS to recurrent layers.

46

DeepIoT: Handwritten digits recognition
with LeNet5

Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (5 × 5) 20 0.5k 10 50% 24.2% 84%

conv2 (5 × 5) 50 25k 20 20% 20.7% 91%

fc1 500 400k 10 0.8% 1.0% 78.75%

fc2 10 5k 10 2.0% 16.34% 70.28%

total 431k 1.98% 2.35% 72.39%

Test Error 0.85% 0.85% 0.85% 1.05%

47

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

Proportion of memory consumption by the model

A
cc

u
ra

cy
(%

)

DeepIoT
DyNS
SparseSep

0 0.02 0.04 0.06 0.08 0.1
20

40

60

80

100

DeepIoT: Handwritten digits recognition
with LeNet5

48

DeepIoT: Image recognition with VGGNet
Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (3 × 3) 64 1.7K 27 42.2% 53.9% 93.1%

conv2 (3 × 3) 64 36.9K 47 31.0% 40.1% 57.3%

conv3 (3 × 3) 128 73.7K 53 30.4% 52.3% 85.1%

conv4 (3 × 3) 128 147.5K 68 22.0% 67.0% 56.8%

conv5 (3 × 3) 256 294.9K 104 21.6% 71.2% 85.1%

conv6 (3 × 3) 256 589.8K 97 15.4% 65.0% 56.8%

conv7 (3 × 3) 256 589.8K 89 13.2% 61.2% 56.8%

conv8 (3 × 3) 512 1.179M 122 8.3% 36.5% 85.2%

conv9 (3 × 3) 512 2.359M 95 4.4% 10.6% 56.8%

conv10 (3 × 3) 512 2.359M 64 2.3% 3.9% 56.8%

conv11 (2 × 2) 512 1.049M 128 3.1% 3.0% 85.2%

conv12 (2 × 2) 512 1.049M 112 5.5% 1.7% 85.2%

conv13 (2 × 2) 512 1.049M 149 6.4% 2.4% 85.2%

fc1 4096 2.097M 27 0.19% 2.2% 95.8%

fc2 4096 16.777M 371 0.06% 0.39% 95.8%

fc3 10 41K 10 9.1% 18.5% 90.2%

total 29.7M 2.44% 7.05% 112%

Test Accuracy 90.06% 90.06% 90.06% 87.1%

49

DeepIoT: Image recognition with VGGNet

50

DeepIoT: Image recognition with VGGNet
Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (3 × 3) 64 1.7K 27 42.2% 53.9% 93.1%

conv2 (3 × 3) 64 36.9K 47 31.0% 40.1% 57.3%

conv3 (3 × 3) 128 73.7K 53 30.4% 52.3% 85.1%

conv4 (3 × 3) 128 147.5K 68 22.0% 67.0% 56.8%

conv5 (3 × 3) 256 294.9K 104 21.6% 71.2% 85.1%

conv6 (3 × 3) 256 589.8K 97 15.4% 65.0% 56.8%

conv7 (3 × 3) 256 589.8K 89 13.2% 61.2% 56.8%

conv8 (3 × 3) 512 1.179M 122 8.3% 36.5% 85.2%

conv9 (3 × 3) 512 2.359M 95 4.4% 10.6% 56.8%

conv10 (3 × 3) 512 2.359M 64 2.3% 3.9% 56.8%

conv11 (2 × 2) 512 1.049M 128 3.1% 3.0% 85.2%

conv12 (2 × 2) 512 1.049M 112 5.5% 1.7% 85.2%

conv13 (2 × 2) 512 1.049M 149 6.4% 2.4% 85.2%

fc1 4096 2.097M 27 0.19% 2.2% 95.8%

fc2 4096 16.777M 371 0.06% 0.39% 95.8%

fc3 10 41K 10 9.1% 18.5% 90.2%

total 29.7M 2.44% 7.05% 112%acc_mem.eps

Test Accuracy 90.06% 90.06% 90.06% 87.1%

51

DeepIoT: Handwritten digits recognition
with LeNet5

Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (5 × 5) 20 0.5k 10 50% 24.2% 84%

conv2 (5 × 5) 50 25k 20 20% 20.7% 91%

fc1 500 400k 10 0.8% 1.0% 78.75%

fc2 10 5k 10 2.0% 16.34% 70.28%

total 431k 1.98% 2.35% 72.39%

Test Error 0.85% 0.85% 0.85% 1.05%

52

DeepIoT: Image recognition with VGGNet

53

DeepIoT: Speech recognition with deep
Bidirectional LSTM

Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext

LSTMf1 LSTMb1 512 512 1.090M 1.090M 55 20 10.74% 3.91% 34.9% 18.2%

LSTMf2 LSTMb2 512 512 2.097M 2.097M 192 71 4.03% 0.54% 37.2% 23.1%

LSTMf3 LSTMb3 512 512 2.097M 2.097M 240 76 17.58% 2.06% 43.1% 27.9%

LSTMf4 LSTMb4 512 512 2.097M 2.097M 258 81 23.62% 2.35% 52.3% 40.2%

LSTMf5 LSTMb5 512 512 2.097M 2.097M 294 90 28.93% 2.78% 72.6% 61.8%

fc1 29 59.3K 29 37.5% 69.0%

total 19.016M 9.98% 37.1%

Word error rate 9.31 9.20 9.62

54

DeepIoT: Speech recognition with deep
Bidirectional LSTM

55

DeepIoT: Heterogeneous Human Activity
Recognition with DeepSense

Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext DyNS SparseSep

conv1a
conv1b
(2 × 9) 64 64 1.1K 1.1K 20 19 31.25% 29.69% 92% 95.7% 50.3% 60.0% 100% 100%

conv2a
conv2b
(1 × 3) 64 64 12.3K 12.3K 20 14 9.76% 6.49% 70.1% 77.7% 25.3% 40.5% 114% 114%

conv3a
conv3b
(1 × 3) 64 64 12.3K 12.3K 23 23 11.23% 7.86% 69.9% 66.2% 32.1% 35.1% 114% 114%

conv4 (2 × 8) 64 65.5K 10 5.61% 40.3% 20.4% 53.7%

conv5 (1× 6) 64 24.6K 12 2.93% 27.2% 18.2% 100%

conv6 (1 × 4) 64 16.4K 17 4.98% 24.6% 12.0% 100%

gru1 120 227.5K 27 5.8% 1.2% 100% 100%

gru2 120 86.4K 31 6.24% 3.6% 100% 100%

fc 6 0.7K 6 25.83% 98.6% 99% 70%

total 472.5K 6.16% 17.1% 74.5% 95.3%

Test Accuracy 94.6% 94.7% 94.6% 94.6% 93.7%

56
Yao, Shuochao, et al. "DeepSense: A unified deep learning framework for time-series mobile sensing data processing."
Proceedings of the 26th International Conference on World Wide Web, 2017.

DeepIoT: Heterogeneous Human Activity
Recognition with DeepSense

57

DeepIoT: Biometric Motion Analysis for
User identification with DeepSense

Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext DyNS SparseSep

conv1a
conv1b
(2 × 9) 64 64 1.1K 1.1K 7 1 10.93% 1.56% 64.4% 75.5% 66.8% 65.6% 100% 100%

conv2a
conv2b
(1 × 3) 64 64 12.3K 12.3K 7 4 1.2% 0.1% 32.5% 34.7% 36.6% 48.0% 114% 114%

conv3a
conv3b
(1 × 3) 64 64 12.3K 12.3K 9 9 1.54% 0.88% 31.6% 28.6% 38.4% 43.5% 114% 114%

conv4 (2 × 8) 64 65.5K 7 1.54% 12.1% 29.2% 53.7%

conv5 (1× 6) 64 24.6K 5 0.85% 21.0% 23.3% 100%

conv6 (1 × 4) 64 16.4K 7 0.85% 18.9% 16.0% 100%

gru1 120 227.5K 13 1.18% 0.42% 100% 100%

gru2 120 86.4K 9 0.69% 1.61% 100% 100%

fc 9 1.1K 9 7.5% 89.6% 98% 88%

total 472.9K 1.13% 7.76% 77.0% 95.4%

Test Accuracy 99.6% 99.6% 99.6% 99.6% 98.8%

58

DeepIoT: Biometric Motion Analysis for
User identification with DeepSense

59

Discussion
1. The tradeoff between compression granularity and system
efficiency.

2. Compress more complex network structures.

3. Theoretical analysis or measures for the degree of compression.

60

Code available
https://github.com/yscacaca/DeepIoT

61

