A Review

Tarek Abdelzaher Dept. of Computer Science University of Illinois at Urbana Champaign

Sensors

Compass technology (dates back to 200 BC)

Sun dials (clocks) date back to 3500 BC.

Canaries used hundreds of years ago in mine shafts to detect gas leakage: Dead canary = leakage

Modern Networked Smart Sensors Driver #1: Moore's Law

Modern Networked Smart Sensors Driver #2: Networking Technology

Embedded Everywhere (2001) The "Modern Sensor Netwoks" Beginning

Trend:

- Invisible (embedded) computing, implicit interfaces (users need only 1 mobile device – rest should be non-intrusive)
- Context-aware computing (new sensors, new effectors)
- Ubiquitous instrument what we use most (attire, personal effects, ...)

Rise of Modern Networked Sensing Early Days

Early Days of Sensor Networks

Early Assumptions

- Large scale multihop wireless networks
- Cheap miniature hardware
- Ad hoc sensor placement with some statistical distribution
- Homogeneous nodes with complex emerging behavior
- Highly redundant sensing (as opposed to centralized)

Early Days of Sensor Networks (1999-2004)

Precision Agriculture

Applications

Disaster Response

Features

- Ad hoc deployment
- Massive distribution
- Interaction with a physical environment
- Unattended operation

Habitat Monitoring

Target Tracking 8

Infrastructure Protection

Border Control

Popular (Early) Research Problems

- MAC-layer protocols
- Routing protocols (that are not ID-based)
- Energy-optimal data collection
- Optimal sensory coverage
- Optimal communication coverage
- Lightweight distributed target tracking
- Distributed localization (finding where you are)
- Clock synchronization

Rise of Human-centric Sensing The Past Decade

Example: "Smart Attire" Human Activity Monitoring

Smart Jacket for Human Activity Monitoring

Example: Smart Spaces Assisted Living

Instrumented spaces for "aging in place"

 Reduce cost of long-term care by facilitating independent living

AlarmNet testbed at the University of Virginia

Example: Health and Wellness Microsoft HealthVault

- HealthVault (Microsoft): Fitness and biometric monitoring devices automatically upload data to a central repository for safekeeping and analysis
 - A significant number of medical device vendors announced devices compatible with healthVault

Community Sensing Geo-tagging the World

- Phone-based geo-tagging of events of interest (UCLA)
 - Crowds/pollution on beach
 - Invasive species (weeds)
 - Trucks in residential neighborhoods
 - Drinking fountains

Reprinted from UCLA/CENS

Community Sensing Street Statistics: CarTel, BikeNet, ...

Reprinted from http://cartel.csail.mit.edu/overview.html

- CarTel (MIT): An ad hoc network of vehicles with sensors
 - Measures road congestion
 - Generates annotated maps

- Bikenet (Dartmouth College): A self-selected community of biking enthusiasts
 - Shares bike route statistics

Challenges

Challenges

1) Participants do not trust aggregator (do not want to reveal private data)

 \rightarrow A privacy-preserving collection service

Challenges

2) Aggregator does not trust participants (does not know how reliable sources and data are)

 \rightarrow A fact-finding service

Challenges – Privacy

1) Participants do not trust aggregator (do not want to reveal private data)

 \rightarrow A privacy-preserving collection service

An Example

 Dieters want to share weight information to find efficacy of the given diet, without revealing their true weight, average, trend (loss or gain of weight), etc...

Perturb data? Add Noise?

Weight curve perturbed by adding independent random noise (Gaussian in this case)

Estimation using a filter can breach privacy of user

Add Noise and Random Offset?

Weight curve perturbed by adding independent random Gaussian noise and a random offset

Estimation can still observe trend

Challenge

- Develop perturbation that preserves privacy of individuals
 - Cannot infer individuals' data (values and trends) without large error
 - Reconstruction of community distribution can be achieved within proven accuracy bounds

Initial Thoughts

- Add noise that itself is a time-series that "significantly overlaps" in the frequency domain with the data signal
 - Filtering cannot separate data from noise
- Aggregate perturbed signals from multiple sources
- Use de-convolution to recover the distribution of the original data signal from that of the perturbed signal and that of noise
- * Raghu Ganti, Nam Pham, Yu-En Tsai, Tarek Abdelzaher "PoolView: Stream Privacy for Grassroots Participatory Sensing," *Sensys*, Raleigh, NC, November 2008.

Example: Perturbing Speed and Location

- Clients lie about both location and speed
- Server reconstructs actual speed at real location

Reconstruction Accuracy

Real versus reconstructed speed of cars on UIUC campus

Real community distribution of speed

Reconstructed community distribution of speed

More on Reconstruction Accuracy

Real versus reconstructed speed on Washington St., Champaign

Reconstructed community distribution of speed

How Many Cars are Speeding on UIUC Campus?

Real versus estimated percentage of speeding vehicles on different streets (from data of users who "lie" about both speed and location)

Street	Real % Speeding	Estimated % Speeding
University Ave	15.6%	17.8%
Neil Street	21.4%	23.7%
Washington Street	0.5%	0.15%
Elm Street	6.9%	8.6%

Sensing in Social Spaces The Current Decade http://courses.engr.illinois.edu/cs598tar/

> Tarek Abdelzaher Dept. of Computer Science University of Illinois at Urbana Champaign

Sensing in Social Spaces Information Services for a Smarter World

People Sensors

Analytics

Data

Future Applications

Social Sensing (Crowd-sensing) Humans + Cyber + Physical

http://www.golem.de/news/crowd-managementsmartphone-soll-massenpanik-verhindern-1209-94331.html

http://vimeo.com/album/2020385

Ensuring safety of pilgrims during Hajj http://www.crowdsensing.net/crowdsensing/

http://asmarterplanet.com/studentsfor/blog/ category/transportation-systems

Internet of Things Cloud + Mobiles + Sensors + People

Applications: Personal (e.g., Medical/Tele-health)

Applications: Group-oriented (e.g., Building Management)

Zero-energy Building: Science House at the Science Museum of Minnesota

Residential Energy

Applications: Urban Efficiency (e.g., Transportation) $_{F_{engine}} = \frac{\Gamma(\omega)Gg_k}{r}$

Path

(150)

Frasca Field

Transportation

Applications: Urban Efficiency (e.g., Disaster Response)

Japan's Tsunami and Nuclear Event, 2011

Applications: Urban Sustainability

Uppsala Glacier (Time Magazine, Special Issue on Global Warming, March 26, 2006)

Sustainability

Medical Insulin pumps, pacemakers, glucose monitors, ...

Sensing Applications

What is in common?

Disaster Recovery

Sustainability

Transportation

Leverage the Most Versatile Sensing "Platform"

The Most Versatile Sensing Platform

twitter 🎔

facebook

flickr

🖸 Instagram

Social Sensing: Using the Most Versatile Sensing Platform 2 million special-interest groups 500 million tweets daily You Tube 80 million pictures daily 300 hours of video 1.44 billion active users every minute facebook 60 million Social media sites, 2012-2014 venues % of online adults who use the following social media websites, by year 2012 2014 2013 foursquare 67_71 71 28 20 22 Facebook LinkedIn Pinterest Instagram Twitter

Social Sensing: Using the Most Versatile Sensing Platform

The Growth of Social Media

- Situation awareness
- Anomaly explanation
- Surrogate sensing
- Social optimization

http://www.sociallystacked.com/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/2014

An Internet Minute Today: Growing Social Network *Data* Size!

→ Novel Social Data Management Services!

60 seconds on the Internet

A Deluge of Information!!!

Real-time data grows much faster than our cognitive ability to consume it

Fast data growth!

Slow Evolution!

Real-time data grows much faster than our cognitive ability to consume it

Fast data growth!

Streaming Data Distillation Services

Slow Evolution!

Emergence of Social Sensing Information Services for a Smarter World

Future Applications

Examples of Real-time Content Analytics

Dataminr

Uses Twitter to analyze and predict global events

Twitter mood predicts stock market trends

J. Bollen et al. / Journal of Computational Science 2 (2011) 1-8

FourSquare: Keeps track of human spatio-temporal data

Towards Information Distillation Services

 Much like Google organizes (relatively static) world content, we need an engine for organizing realtime/streaming data feeds and:

> Reconstructing the "State of the World", Physical and Social!

> > Information distillation

Clean structured representation, high quality of information

A firehose of text, images, video, sound, and time-series data

Conclusions

- The world's streaming content is growing
- Sensor devices are increasingly available to the common user
- An opportunity to enhance real-time situation understanding from streaming human and sensor data
- An opportunity to better interpret context of sensor observations
- Analytic foundations and tools are being developed for data cleaning, disambiguation, and search