

Tarek Abdelzaher Dept. of Computer Science University of Illinois at Urbana Champaign

Review: Localization with a Single LED

Can you simultaneously localize a large number of optical receivers using a single "smart" LED?

Song Liu and Tian He, "SmartLight: Light-weight 3D Indoor Localization Using a Single LED Lamp," ACM Sensys, Delft, The Netherlands, November 2017

Idea #1

Your location determines what you see:

Idea #2 Distance determines size of visible area

Testbed

Localization with Aircraft Signals

Can we use aircraft signals to localize mobile devices even in-doors (where there is no GPS)?

Manuel Eichelberger, Kevin Luchsinger, Simon Tanner, and Roger Wattenhofer, "Indoor Localization with Aircraft Signals," ACM Sensys, Delft, The Netherlands, November 2017

Localization with Aircraft Signals

What Can Smart Phones Do (In Personal Sensing)?

What's next in personal/context sensing?

- Deep learning?
- Augmented reality?
- Virtual Reality?

Processors in the Smartphone Market

Platform and Datasets

Snapdragon 800 SoC

Platform and Datasets

Snapdragon 800 SoC

Question

Can deep-learning-based classification be run on cell phones?

Deep Learning

Nicholas D. Lane and Petko Georgiev, "Can Deep Learning Revolutionize Mobile Sensing?" ACM HotMobile, February 2015

Approaches: Energy and Latency Comparison

- DNN: Deep learning
- GMM: Gaussian mixture models
- DT: Decision trees

Approaches: Energy and Latency Comparison

- DNN: Deep learning
- GMM: Gaussian mixture models
- DT: Decision trees

Approaches: Accuracy Comparison

- DNN: Deep learning
- GMM: Gaussian mixture models
- DT: Decision trees

Can Augmented Reality Applications Run on Cell Phones?

Can Augmented Reality Applications Run on Cell Phones?

- Prediction: Augmented reality market will grow from \$500 million in 2016 to \$5.7 billion in 2021
- Majority of revenue from subscription and license fee model
- Dominated by Tablets and Smart Glasses

Is the problem addressed in this paper already solved (e.g., see PokemonGo)?

- Why? Why not?
- Same? Different? How different?

Using the Camera: Augmented Reality

- Vision:
 - Annotate everyday objects using mobile phones.
 - Allow others to retrieve annotations previously associated with objects

Sensor-based: Localization

Vision-based: Processing Latency

Vision-based: Upload Latency

Latency uploading a 1920*1080 frame

Vision-based: Accuracy and Latency of Object Matching (Against 100 Objects)

Must minimize number of objects matched against

OverLay System

Main Idea: Geometric Neighborhoods

Question: How many images to keep of each object?

- Too few \rightarrow accuracy problems
- Too many \rightarrow latency problems
- What is the best way to reduce number of views without reducing accuracy?

 Optimizations reduce the amount of matching that needs to happen

- What was the main idea in reducing power of eye-gaze trackers?
 - Do (what) instead of (what)?
- What main challenges did the authors list in implementing the above low-power gaze-tracking idea?
 - How did they argue that this was a difficult problem?

Photo-diodes measure reflected light

Reflected light is non-uniform and depends on scene

(a) A ring-shaped PCB on a VR lens

(b) Reflected light w/ center pupil

 Reflected light also depends on pupil position (why?)

Reflected light also depends on user

General Idea

 Understand correlations between front and back facing sensors for different eye positions and use it to train a boosted decision tree classifier to estimate eye position vector

Examples

 Correlations with eye staring straight ahead (pupil in the middle)

	Front sensor (facing display)								
ck sensor (facing eye)		Т	TR	R	BR	В	BL	L	TL
	Т	0.48	0.75	0.87	0.87	0.96	0.81	0.59	0.54
	TR	0.69	0.55	0.76	0.76	0.79	0.91	0.88	0.78
	R	0.66	0.64	0.55	0.67	0.79	0.83	0.93	0.89
	BR	0.86	0.79	0.62	0.51	0.64	0.74	0.76	0.84
	В	0.97	0.83	0.68	0.55	0.50	0.51	0.78	0.79
	BL	0.84	0.90	0.89	0.86	0.85	0.61	0.60	0.58
	L	0.80	0.91	0.92	0.78	0.65	0.49	0.52	0.58
Ba	TL	0.66	0.88	0.89	0.91	0.86	0.78	0.52	0.47

Blink Detection

Evaluation: Tracking Error

 Smaller error when training and testing with the same user

