
Sensing in Social Spaces

Project Ideas (Continued)



A Smart City Application:

Sustainable Transportation

Transportation 2



EPA Statistics (USA)

 200 million light vehicles on the streets in
the US

 Each is driven 12000 miles annually on
average

 Average MPG is 20.3 miles/gallon

 118 Billion Gallons of Fuel per year!

 Savings of 1% = One Billion Gallons



GreenGPS: Fuel Efficient
Vehicular Navigation

Source: US EPA
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 Find the most fuel-efficient
route (instead of a fastest or
shortest)

 Fuel-efficient route is different
from shortest or fastest route
 Congestion  shortest may not

be fuel efficient

 MPG vs. speed is non-linear 
fastest may not be fuel efficient
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Fuel Consumption Model

 Simple model for fuel consumption derived from first principles

 The model is then is approximately recast in terms of easily
measurable crowdsensed parameters (e.g., locations of stop
signs, traffic lights, speed limits, and actual traffic conditions)



Error Distribution in Fuel
Prediction



Fuel Consumption Examples

 Experiments on five cars, each does four round-trips between 2
landmarks in Urbana-Champaign on fastest and shortest routes,
showing that neither wins consistently in being energy-optimal

Car Route Better Route Difference

Honda Accord
2001

Home1 to Mall Shortest 31.4%

Home1 to Gym Shortest 19.7%

Ford Taurus 2001 Home2 to
Restaurant

Shortest 26%

Toyota Celica 2001 Home2 to Work Fastest 10.1%

Nissan Sentra
2009

Home3 to Clinic Fastest 8.4%

Honda Civic 2002 Home4 to Work Fastest 18.7%



End Result: Fuel Savings

 The bottomline: percentage of fuel is saved over
fastest, shortest, and GarminEco routes:



Crowdsensing challenge

Extrapolation from Sparse Data
(Conditions of Sparse Deployment)



Extrapolation from Sparse
Data
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Fuel consumption of
A few cars driven on a
few roads

Predict fuel consumption of
any car on any road



Generalization and Modeling

 Regression modeling:

 Problem: one size does not fit all. Who says that Fords and
Toyotas have the same regression model?

 Regression model per car?

 Problem: Cannot use data collected by some cars to
predict fuel consumption of others.

 Challenge: Must jointly determine both (i) regression
models and (ii) their scope of applicability, to cover
the whole data space within an acceptable modeling
error.



Idea: Data Clustering
(Using Data Cubes)

 Data cubes are clustering technique that groups all crowd-
sensed data according to several alternative dimensions
(clustering policies) such as by car make, model, or year.

 A regression model is then derived for resulting clusters

 Different clustering policies are evaluated in terms of their
fuel prediction error to determine the best policy

 When a navigation request from a new vehicle arrives:
 The best clustering policy is used to add the vehicle to existing

clusters

 The regression model for this cluster is used to predict the vehicle’s
fuel consumption



The Regression Cube Model

 Data cells correspond to:
 Output attributes Yc = {yi}

 Each associated with k input attributes xi1, … , xik , Xc={xij}

 Data cells store the following measures:
 Regression model coefficients:

 Regression modeling error:



Example of Regression Cubes

 Goal: predict fuel
consumption
 Group by make,

model, or year



Example of Regression Cubes

Data Cells:

(*,*,*) – X, Y



Example of Regression Cubes

Data Cells:

(Toyota,*,*) – Xc1 Yc1

(Ford,*,*) – Xc2 Yc2

(Honda,*,*) – Xc2 Yc3



Data Cell Measures

 Main challenge: compute data cell measures recursively
and without reprocessing raw data

 Measures can be classified as:

 Distributive – f(x1, x2, x3) = f(f(x1, x2), x3) - Efficient
 Examples: sum, count

 Algebraic/Compressible – An algebraic combination of
distributive functions - Efficient
 Example: average = sum/count

 Holistic – Reprocess raw data - Inefficient
 Example: median



The Challenge in Regression
Cubes

 Main problem: Model parameters and estimation
error are not distributive



An Efficient Representation

 Compressed representation of a cell c:

 : scalar value

 : vector of size k

 : k by k matrix

 nc : number of samples

 These matrices are distributive
measures



An Efficient Data Cube for Fuel
Consumption Regression Models

 Model coefficients:

 Error:

 Model coefficients and regression error
are compressible measures



Idea #2: Model Reduction

 Independently find the set of model parameters, L, for
each cell, such that:
 The cell is reliable

 Corresponding error is minimized

 Challenge: Exponential number of Ls

Velocity (v)
Mass (m)

Frontal area (A)
Stop signs (S)

L = {v}
L = {m}
L = {A}
L = {S}

Attributes

0.031
0.152
0.043
0.056

yes
yes
yes
yes

Error Reliable



Computing data Cell Confidence

 Measure of confidence:
 Probability at which the actual coefficients are far from the

estimate

 Reliable Cell:



Idea #2: Model Reduction

Velocity (v)
Mass (m)

Frontal area (A)
Stop signs (S)

L = {v}
L = {m}
L = {A}
L = {S}

Attributes

0.031
0.152
0.043
0.056

yes
yes
yes
yes

Error Reliable

 Independently find the set of model parameters, L, for
each cell, such that:
 The cell is reliable

 Corresponding error is minimized

 Challenge: Exponential number of Ls



Idea #2: Model Reduction

L = {v, m}
L = {v, A}
L = {v, S}

0.021
0.030
0.028

no
yes
yes

Error Reliable

L = {v}
L = {m}
L = {A}
L = {S}

Velocity (v)
Mass (m)

Frontal area (A)
Stop signs (S)

Attributes

 Independently find the set of model parameters, L, for
each cell, such that:
 The cell is reliable

 Corresponding error is minimized

 Challenge: Exponential number of Ls



Idea #2: Model Reduction

L = {v, m}
L = {v, A}
L = {v, S}

0.021
0.030
0.028

no
yes
yes

Error Reliable

L = {v}
L = {m}
L = {A}
L = {S}

Velocity (v)
Mass (m)

Frontal area (A)
Stop signs (S)

Attributes

 Independently find the set of model parameters, L, for
each cell, such that:
 The cell is reliable

 Corresponding error is minimized

 Challenge: Exponential number of Ls



Idea #2: Model Reduction

L = {v, m}
L = {v, A}
L = {v, S}

L = {v}
L = {m}
L = {A}
L = {S}

L = {v, S, m}
L = {v, S, A}

0.024
0.026

no
no

Error Reliable

 Independently find the set of model parameters, L, for
each cell, such that:
 The cell is reliable

 Corresponding error is minimized

 Challenge: Exponential number of Ls



Idea #2: Model Reduction

L = {v, m}
L = {v, A}
L = {v, S}

L = {v}
L = {m}
L = {A}
L = {S}

L = {v, S, m}
L = {v, S, A}

Reduced Model: {v, S}

 Independently find the set of model parameters, L, for
each cell, such that:
 The cell is reliable

 Corresponding error is minimized

 Challenge: Exponential number of Ls



Accuracy Results

 The sampling regression cube improves prediction
accuracy significantly

 A regression cube
without model
reduction is even
worse than a single
model!



Problem: Traffic Regulator
Mapping
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Cell phones in vehicles were used as the sources (whose
reliability is unknown)

Stopped for 2-10 seconds?  Stop sign
Stopped for 40 seconds – 1 minute?  Traffic light

All reports were fed to a data cleaning/clustering service to
determine their probability of correctness

Resulting predictions were compared against ground truth



Social Channel “Decoding”
A Maximum Likelihood Estimation Problem

…

Sources Claims

Attribute:
Reliability

Attribute:
True/False

 Joint estimation of
 Source reliability

 True/false value of each
observation

 Given
 Who said what

Events

Civil Unrest

Hurricanes

Man-made disasters
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Traffic Light Location Detection

Experiment setup:
34 drivers, 300 hours of driving in Urbana-Champaign
1,048,572 GPS readings, 4865 claims generated by phone
(3033 for stop signs, 1562 for traffic lights)

Traffic Regulator Mapping
From GPS Data



Traffic Regulator Mapping
From GPS Data
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Stop Sign Location Detection

Experiment setup:
34 drivers, 300 hours of driving in Urbana-Champaign
1,048,572 GPS readings, 4865 claims generated by phone
(3033 for stop signs, 1562 for traffic lights)



Traffic Regulator Mapping
(Enhanced)
Understanding Silence
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Original Improved
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Original Improved

Traffic Regulator Mapping
(Enhanced)
Understanding Silence



Example with Time-varying
Ground Truth State

 Estimating empty parking spots from unreliable observers



Problem:
Cleaning Noisy Speed Data

Ground
truth

Our toolAverage



The Age of Social Broadcast

O(n) O(n)

The Past



The Age of Social Broadcast

O(n) O (n2)

O(n) O(n)

O(n) O(n2)

The Present



Challenge: Extractive
Summarization

Build a data service that allows applications
to retrieve (extractive) data summaries at
arbitrary levels of granularity in accordance
with an application-specific redundancy
metric
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Customizability: The
Distance Metric
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Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function
Distance
Metric

(Must obey
triangle

inequality)
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Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function
Distance
Metric

(Must obey
triangle

inequality)

Opaque type (not
interpreted by

service)

Application specific functions
(customization API)

Customizability: The
Distance Metric
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Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function
Distance
Metric

(Must obey
triangle

inequality)

Customizability: The
Distance Metric



44

Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function

Distance
Metric

(Must obey
triangle

inequality)

Customizability: The
Distance Metric
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Hierarchical
Clustering

Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function

Distance
Metric

(Must obey
triangle

inequality)

Customizability: The
Distance Metric



Summarization

46

Hierarchical
Clustering

Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function

Distance
Metric

(Must obey
triangle

inequality)
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Hierarchical
Clustering

Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function

Distance
Metric

(Must obey
triangle

inequality)

Summarization
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Hierarchical
Clustering

Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function

Distance
Metric

(Must obey
triangle

inequality)

Summarization
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Hierarchical
Clustering

Data
Object

Feature
VectorApplication Callback

Data
Object

Feature
VectorApplication Callback

Difference Function

Distance
Metric

(Must obey
triangle

inequality)

Summarization



A Network Paradigm Shift
Communication  Information Distillation

 Present Networks

Goal:
Communication

 Maximizes bit throughput
between end-points

 Most data is “logical”

 Protocols geared primarily for
point-to-point communication

 Data loss may be a problem

 Future Distillation Networks

Goal:
Information Distillation

 Maximizes information flow

 Much data is “physical”

 Protocols geared for data filtering,
and aggregation

 Data loss may be a feature
intended to reduce less
informative bits

The data fire-hose effect



A Primary Network Design
Challenge

 How to build networks that maximize useful
information flow from the physical world?

The Physical
World

Information
Users

Information-centric
Network



Information-maximizing
Prioritization

 Determine
transmission
order?



Information-maximizing
Prioritization

 Determine
transmission
order?1



Information-maximizing
Prioritization

 Determine
transmission
order?1

2



Information-maximizing
Prioritization

 Determine
transmission
order?1 3

2



Information-maximizing
Prioritization

 Determine
transmission
order?1 3

2

4



Information-maximizing
Prioritization

 Determine
transmission
order?1 3

2

4

5



Information-maximizing
Prioritization

 Determine
transmission
order?1 3

2

4

5

Coverage-monotonic scheduling



Information-maximizing
Prioritization

Note: Coverage
can be defined in
an abstract
feature space

1 3

2

4

5

Coverage-monotonic scheduling



A Disaster Response Scenario

 A big disaster strikes a city…

• Volunteers are recruited: They scout the area,
capture pictures and send them to a rescue
center

• Network constraints prevent sending all pictures

Hurricane Katrina 2005 Nepal earthquake 2015 Thailand flood 2011

Images are collected from the Internet



Fire on 6th and Main.
Collapse on Park Ave.

Flooding on State St. Structural damage on Pier Square

Problem: Data Selection to
Maximize Coverage



Fire on 6th and Main.
Collapse on Park Ave.

Example of

Bad Coverage

An Example of Poor Data Selection (Low Coverage)



Fire on 6th and Main.
Collapse on Park Ave.

Flooding on State St. Structural damage on Pier Square

Example of

Good Coverage

An Example of Good Data Selection
(High Coverage)



 Implement coverage-maximizing in-network
prioritization for forwarding and storage

 Objects are forwarded/dropped in a priority order
aimed to maximize coverage of delivered content

 Objects similar to previously forwarded ones get lower
priority

 Challenge: Forwarding and dropping must be
made aware of the degree of semantic
redundancy (i.e., similarity) between objects

A Scheduling Approach:
Coverage-maximizing Priorities



Robustness of
Resources

Robustness of
Data Access

Robustness of
Information
Extraction

Robustness of
Inference

• Ensure Robustness of:

– Underlying physical resources: A set of inter-dependent resource networks
(e.g., for data transport, power, and physical mobility)

– Data communication and storage resources: A digital plane that offers
routing, storage, and capacity to access raw data

– Information resources: Information filters for assessing quality of information
and for filtering higher-quality information from raw data

– Inference processes: Tools for modeling, estimation, and prediction of latent
variables relevant to decision support

Project Ideas:
Robustness in Human-centric CPS



Failures in Complex Systems
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When systems fail, a
common goal is:

Localize and fix the
root cause!



Complexity Reduction:
Simplifying Dependencies

Reduce interactions and coupling
 Reduces propagation of local failures globally

Tightly coupled Less coupled
Robustness
solutions



The Performance/Robustness
Trade-off

Performance: Exploring
the edge of stability with
global knowledge (global
 more dependencies)

Robustness: Guaranteeing
delivery in the face of
adverse conditions and
limited knowledge



Interactive Complexity in
Cyber-Physical Systems

 Performance optimizations lead to:

 Complex interactions (e.g., global versus local)

 More dependencies

 Deeper cascading failures

 Lower robustness

Cascading failure on
“high-performance” road

Non-cascading failure on
side-street
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Achieve both Performance and
Robustness together ?
The Simplex Architecture (by Lui Sha)

Simple high
assurance
core

Complex high
performance
subsystem

Data Flow Block Diagram

System state

Decision

A simple verifiable core; diversity in the form of 2
alternatives; feedback control of the software execution.


