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Fact-finding Research

Motivation and Approach
Goal: Develop a mathematical foundation for “social sensing” – the exploitation of
noisy social network data to attain reliable situation awareness.

1. Construct models of “social channels”

2. Establish the fundamental feasibility/accuracy limits on truth recovery from noisy social
network data

3. Construct social-influence-aware fact-finding algorithms that approach these limits
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Approach: Model the social network
as a noisy channel that transforms
“ground truth” into noisy observations

• Use information-theoretic results to
understand its fundamental performance
limits.

• Use estimation theory to build optimal
fact-finders (“channel decoders” that
approach these limits)
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Egypt President
Arrest

Hurricane Sandy

Boston Marathon
Explosion

-Reliability of sources
-Correctness of claims…

Sources
Claims

Attribute:
Reliability

Attribute:
True/False

Maximum
Likelihood
Estimation

Events

Maximum Likelihood Estimation

D. Wang, et al., IPSN, 2012

# of True claims /Total # of
claims a source makes

Probability a claim is true
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Unknown a
priori!
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Events

…

Sources
Claims

Attribute:
Reliability

Attribute:
True/False

Uncertain Data Provenance
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Fukushima

Egypt President
Arrest

Hurricane Sandy

Boston Marathon
Explosion

D. Wang, et al., IPSN, 2014
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Events

…

Sources
Claims

Attribute:
Reliability

Attribute:
True/False

Formulate the Likelihood Function
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Fukushima

Egypt President
Arrest

Hurricane Sandy

Boston Marathon
Explosion

SC: Source Claim Graph

SD: Social Dissemination
Graph
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Using Bayesian Theorem:
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where is the overal prior that a randomnly
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Basis Definition

p
i ,k

=
number of time S

i
and S

k
make the same claim

number of claims made by S
k

source S
k

is the parent node of source S
i

in social network
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Expectation Maximization

Estimation
parameter

Observed
data

Hidden
Variable

- Expectation Step (E-step)

- Maximization Step (M-step)

X

Observation Matrix

Z={z1, z2, …zN} where zj =1 when
claim Cj is true and 0 otherwise

Find MLE of estimation parameter
and values of hidden variables
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Apply EM

Expectation Maximization
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Likelihood Function Incorporating Source Dependency

Dependent
Sources

i

g

Claim
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E-Step

M-Step
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S2

S1

C1

C
True Claim

a1

SD Links

SC Links

S3

S4

S2

S1

C1

S3

S4

Example 1 Example 2

SD Links
that are
ignored

Missing SC
Links

1-p21

p31

p41

1-a2

1-a1

a3

a4

S

Source that
made claim

Simple Illustrative Examples
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http://apollo.cs.illinois.edu/
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Keywords/Location

A Real World Application

Social EM is integrated as an
option for data analysis

EM is Integrated with Apollo

Data Collection Frontend Information Analysis Frontend
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Trace Hurricane Sandy Hurricane Irene Egypt Unrest

Time duration 14 days (Nov.2-
15, 2012)

8 days (Aug.26-
Sept.2, 2011)

18 days (Feb.2-
Feb.19,2011)

Locations 16 cities in East
Coasts

New York Cairo, Egypt

# of users
tweeted

7,583 207,562 13,836

# of tweets 12,931 387,827 93,208

# of users
crawled in
social network

704,941 2,510,316 5,285,160

# of follower-
followee links

37,597 3,902,713 10,490,098
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Estimate Latent Social Dissemination (SD)
Network

i

j

i j

i j

Estimate Latent
Social

Dissemination
Network
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i jEpidemic
Cascade*

FF SD

RT SD

EC SD* P. Netrapalli and S. Sanghavi. Learning the graph of epidemic
cascades. SIGMETRICS ’12, pages 211–222, New York, NY, USA,
2012. ACM.
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Understanding Source
Dependency Helps !

18%

16

32%

RT: Retweet

FF:
Follower-
Followee

EC:
Epidemic
Cascade
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15%

Understanding Source
Dependency Helps ! 17

36%

Evaluation on Irene Trace

RT: Retweet

FF:
Follower-
Followee

EC:
Epidemic
Cascade
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10%

Understanding Source
Dependency Helps ! 18

42%

Evaluation on Egypt Trace

RT: Retweet

FF:
Follower-
Followee

EC:
Epidemic
Cascade
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http://www.washingtonpost.com/blogs/blogpost/post/hurricane-irene-photo-of-
shark-swimming-in-street-is-fake/2011/08/26/gIQABHAvfJ_blog.html

Shark in the street!

Suppressed by Social EM

FAKE!
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• Failure of physical sensor: independent

• Failure of social sensing sensor: dependent

– People talk and influence each other

– Correlated errors

• We need to formulate source dependency correctly!

21
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E Step

M Step
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Empirical Evaluation
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Optimal Estimator
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Pravda Jazeera Ahram Falsehood Probability Truth Probability

Silent Silent Silent 99% 1%

Silent Silent Report 80% 20%

Silent Report Silent 90% 10%

Silent Report Report 40% 60%

Report Silent Silent 95% 5%

Report Silent Report 60% 40%

Report Report Silent 70% 30%

Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”
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Error Bounds

The odds Pravda Jazeera Ahram Falsehood Probability Truth Probability

4% Silent Silent Silent 99% 1%

10% Silent Silent Report 80% 20%

10% Silent Report Silent 90% 10%

20% Silent Report Report 40% 60%

20% Report Silent Silent 95% 5%

13% Report Silent Report 60% 40%

13% Report Report Silent 70% 30%

10% Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”
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Error Bounds

The odds Pravda Jazeera Ahram Falsehood Probability Truth Probability

4% Silent Silent Silent 99% 1%

10% Silent Silent Report 80% 20%

10% Silent Report Silent 90% 10%

20% Silent Report Report 40% 60%

20% Report Silent Silent 95% 5%

13% Report Silent Report 60% 40%

13% Report Report Silent 70% 30%

10% Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”

Odds of omission = 4%
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Error Bounds

The odds Pravda Jazeera Ahram Falsehood Probability Truth Probability

4% Silent Silent Silent 99% 1%

10% Silent Silent Report 80% 20%

10% Silent Report Silent 90% 10%

20% Silent Report Report 40% 60%

20% Report Silent Silent 95% 5%

13% Report Silent Report 60% 40%

13% Report Report Silent 70% 30%

10% Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”

Odds of omission = 4%
Odds of error = 0.1 * 0.2 + …
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Error Bounds

The odds Pravda Jazeera Ahram Falsehood Probability Truth Probability

4% Silent Silent Silent 99% 1%

10% Silent Silent Report 80% 20%

10% Silent Report Silent 90% 10%

20% Silent Report Report 40% 60%

20% Report Silent Silent 95% 5%

13% Report Silent Report 60% 40%

13% Report Report Silent 70% 30%

10% Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”

Odds of omission = 4%
Odds of error = 0.1 * 0.2 + 0.1 * 0.1 + …
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Error Bounds

The odds Pravda Jazeera Ahram Falsehood Probability Truth Probability

4% Silent Silent Silent 99% 1%

10% Silent Silent Report 80% 20%

10% Silent Report Silent 90% 10%

20% Silent Report Report 40% 60%

20% Report Silent Silent 95% 5%

13% Report Silent Report 60% 40%

13% Report Report Silent 70% 30%

10% Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”

Odds of omission = 4%
Odds of error = 0.1 * 0.2 + 0.1 * 0.1 + 0.2 * 0.4 + …
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Error Bounds

The odds Pravda Jazeera Ahram Falsehood Probability Truth Probability

4% Silent Silent Silent 99% 1%

10% Silent Silent Report 80% 20%

10% Silent Report Silent 90% 10%

20% Silent Report Report 40% 60%

20% Report Silent Silent 95% 5%

13% Report Silent Report 60% 40%

13% Report Report Silent 70% 30%

10% Report Report Report 5% 95%

• Alleged event: “France bombs Iraq”

Odds of omission = 4%
Odds of error = 0.1 * 0.2 + 0.1 * 0.1 + 0.2 * 0.4 + 0.2 * 0.05 + 0.4 * 0.13 + 0.3 * 0.13 + 0.05 * 0.1

= 23.6%
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34

K-1 K K+1

8/10 Correct

K-1 to K:
2/5 Correct

10/15 Correct10/15 Correct

K to K+1:
4/6 Correct

14/21 Correct

Consistent ? Consistent ?
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K-1 K K+1

Prior Belief at
Time Chunk K-1

Observation
from K-1 to K

Posterior Belief at
Time Chunk K
Prior Belief at
Time Chunk K

Observation from
K to K+1

Posterior Beliefs at
Time Chunk K+1

Recursive
Estimator

Jointly Estimate Source and Assertion
Reliability within current time chunk

Jointly Estimate Source and Assertion
Reliability within current time chunk
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Recursive Estimator
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K-1 K K+1

Prior Belief at
Time Chunk K

Observation from
K to K+1:

Posterior Belief at
Time Chunk K+1

Recursive
Estimator
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Recursive Estimator

• Recursively update the belief of reliability distribution:

– Compute mean reliability (Compute 1st Moment)

• source reliability parameters, θi

• probability of correctness, P (t(C) = 1|SCk, D, θ)

– Computing the error variance (Compute 2nd Moment)

• error variance of source reliability parameters, θi

– Computing the posterior belief (Update Distribution with Moment Matching)
• updated belief in source reliability

37
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accuracy of 10-hour trace
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Synthetic Data: effect of changing
Simulation parameters
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Synthetic Data: computation time
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Empirical Evaluation: Empirical
Accuracy Results
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Empirical Evaluation: empirical execution
time


