ECE 220

Lecture x0006 - 02/01

Slides based on material originally by: Yuting Chen, Yih-Chun Hu & Thomas Moon

ECE 220 - Spring 2024 ILLINOIS

Recap

» Last time we discussed C * Data types:
language:

Requires #include<stdbool.h>

o int, float, Charl
 Dynamic vs. static typing bool

 Compiled vs. interpreted

e qualifiers
languages

e static, extern
e Variables in C

* const
* |dentifiers, scope, linkage, N\
storage class Makes a variable immutable

ECE 220 - Spring 2024 ILLINOIS

“Recap”

#include <stdio.h>

int main(){
// defining integer constant using const keyword
const int int const = 25;

// defining character constant using const keyword
const char char const = 'A';

lllegal, declaration &
const float PI. definition must be
PI = 3.14; combined!

// defining float constant using const keyword

printf("Printing value of Integer Constant: %d\n", int const);
printf("Printing value of Character Constant: %c\n",char const);
printf("Printing value of Float Constant: %f",PI);

return O0;

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Remark: const

#include <stdio.h>

int main(){
// defining an integer constant
const int var = 10;

Note: const variables
not immune to pointer
manipulation just like
static variables.

printf("Initial Value of Constant: %d\n", var);

// defining a pointer to that const variable
int* ptr = &var;

// changing value

*ptr = 500;

printf("Final Value of Constant: %d", var);
return 0;

UNIVERSITY OF

ECE 220 - Spring 2024 Advanced topic ILLINOIS

Operators: basic concepts

The “rank” of an operator is called
its precedence, and an operation with
a higher precedence is performed
before operations with
lower precedence.

 Operator precedence
e Associativity

e Statements vs. expressions

ASIDE: Note that this can be confusing
e Order of evaluation sometimes - is highest ranked the same as
ranked 1st (typical usage) or is lower rank
associated smaller numbers (c.f
mathematics; think low-rank matrices).

ECE 220 - Spring 2024 ILLINOIS

Operators: basic concepts

The associativity of an operator is a
property that determines how
operators of the same precedence are
grouped in the absence
of parentheses.

* Operator precedence
 Associativity
e Statements vs. expressions

e QOrder of evaluation

| eft associative a + b + ¢ = (a + b) + ¢
Right associative a + b + ¢ = a + (b + c)

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Operators: basic concepts

Statements represent a complete unit
* Operator precedence of work to be carried out by the digital
hardware.

* Associativity
Expressions are syntactically valid

« Statements vs. expressions groupings of variables, operators, and
literal values.

e QOrder of evaluation
2% (X+2)

k =k + 1;

ECE 220 - Spring 2024 ILLINOIS

Operators: basic concepts

« QOperator precedence Expressions are evalluated in QrQe_r of
precedence following associativity

 Associativity rules

e Statements vs. expressions

2 + 3 -4+5=((2+3) -4) +5
e Order of evaluation

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Operators: basic concepts

Note: The compiler order of evaluation

« Operator precedence IS iIndependent of precedence and
associativity and may change between
« Associativity consecutive calls to the same code
snippet.

e Statements vs. expressions £1() + £2() + £3() is parsed

s (f1() + £2()) + £3() dueto
* Order of evaluation left-to-right associativity of operator +,
but the function call to £3 may be
evaluated first, last, or
between £1 () or £2 () at run time.

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Operators: basic types

 Assignment

e Arithmetic Evaluates whatever is to the
right of “=" and assigns that

e Bitwise value to whatever is to the left
of the “=*

 Relational

 Beware comparison vs
* Logical assignment: == vs =

e |ncrement/decrement

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Operators: basic types

* Assignment

* Arithmetic Table 12.1 Arithmetic Operators in C

¢ Bitwise Operator symbol Operation Example usage
* multiplication X, %y
/ division X /Yy

e Relational % integer remainder X %Yy
+ addition X +y

_ - subtraction X -y
* Logical

e |ncrement/decrement

ECE 220 - Spring 2024 ILLINOIS

Operators: basic types

* Assignment

* Arithmetic Table 12.2 Bitwise Operators in C
]] Operator symbol Operation Example usage
 Bitwise »
- bitwise NOT X
_ & bitwise AND X & y
 Relational | vitwise OR X | y
" hitwise XOR X "y
« eft shift X €y
. Logica| » right shift X »y

e |ncrement/decrement

ECE 220 - Spring 2024 ILLINOIS

Operators: basic types

* Assignment

o . .
Arithmetic Table 12.3 Relational Operators in C

: : Operator symbol Operation Example usage
 Bitwise
> greater than X >y
>= greater than or equal X 2=y
: % less than X <Yy
o
Relatlonal = less than or equal X <= Y
—— equal X ==Y
| = not equal X I=y

* Logical

e |ncrement/decrement

ECE 220 - Spring 2024 ILLINOIS

Operators: basic types

* Assignment

* Arithmetic
Table 12.4 Logical Operators in C
* Bitwise Operator symbol Operation Example usage
_ ! ogical NOT I X
e Relational && ogical AND X && vy
|| ogical OR x ||y
* Logical

e |ncrement/decrement

ECE 220 - Spring 2024 ILLINOIS

Operators: basic types

* Assignment
 Two flavors pre and post

e Arithmetic

 Bitwise eed

e Relational y=X++;
z=++X;

* Logical

* Increment/decrement

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Operator precedence

Table 12.5

Operator Precedence and Associativity in C

Precedence Associativity Operators

Group
1 (highest) left-to-right () (function call) [1 (array index) (structure member) -> (structure pointer dereference)
2 right-to-left ++ - - (postfix versions)
3 right-to-left ++ - - (prefix versions)
4 right-to-left * (indirection) & (address of) + (unary) - {(unary) ~ (bitwise NOT) ! (logical NOT)
sizeof
5 right-to-left (type) (lype cast)
6 left-to-right * (multiplication) / (division) % (integer division)
7 left-to-right + (addition) - (subtraction)
8 left-to-right & (left shift) » (right shift)
9 left-to-right < (lessthan) > (greaterthan) <= (less than or equal) >= (greater than or equal)
10 left-to-right == (equals) != (not equals)
11 left-to-right & (bitwise AND)
12 left-to-right ™ (bitwise XOR)
13 left-to-right | (bitwise OR)
14 left-to-right && (logical AND)
15 left-to-right | | (logical OR)
16 left-to-right & : (conditional expression)
17 (lowest) right-to-left = += -= *= afc.. (assignment operalors)

More complete table: https://en.cppreference.com/w/c/language/operator precedence

UNIVERSITY OF

ECE 220 -

Spring 2024

1]

ILLINOIS

https://en.cppreference.com/w/c/language/operator_precedence

Operator precedence

 Based on the operator
precedence table rewrite the
following expression using
parentheses to indicate
precedence:

X & z+ 3 || 9—w % 6

ECE 220 - Spring 2024 ILLINOIS

Basic output

 \We already saw the use cases for printf command.
 Exercise: Type inman printf into the terminal. Issue any other
command required. Read about format specifiers. What will the
following output?
e printf(“%+d is a prime number\n”, 43);

* printf(“43+59 in hexadecimal is: %x\n”, 43+59);

e printf(“%.3f is approximately PI.\n”, 22.0/7);

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

How to check?

#include <stdio.h> Option 1: Compile & run

int main(void){
printf("%+d is a prime number.\n", 43);
printf("43 + 59 in hexadecimal is: %x\n", 43+59);
printf("%.3f is approximately PI.\n", 22.0/7);
return 0O;

S printf "%+d is a prime number.\n" 43 Option 2: Check from bash (advanced)
+43 1s a prime number.

S printf "43 + 59 in hexadecimal is %x\n" $((43 + 59))
43 + 59 1in hexadecimal is 66

$ printf "%.3f is approximately PI\n" "dc --expression "3 k 22 7 /p"
3.142 1s approximately PI

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Basic input
 The command for reading console input is scanf with the
following syntax.

scanf (format specifier, varMemAddress)

« Examples: Tk 4d f
- lakes memory address o

e scanf(“%d”, &Some_int);//////some_lntEHKisome_float

e scanf (“%f", &some_floatb;

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Basic input/output

 Exercise: What will be the output
of the following code snippet?

#include <stdio.h>

int main(void){

int numl, num2;

printf ("Enter the first number:\t");
23, scanf("%d", &numl);

printf("Enter the second number:\t");
ef —— scanf("%x", &num2);

int mysum = numl + num2;

printf("The sum of %1 and %d is: %d", numl, num2, mysum);

return O0;

ECE 220 - Spring 2024 ILLINOIS

Control structures in C

1. Conditional 2. Iteration
Making a decision about which code to Executing code multiple times,
execute, based on evaluated ending based on evaluated
expression expression
o i f ® while
o jf-else o for
® switch e do-while

UNIVERSITY OF

ILLINOIS

ECE 220 - Spring 2024

The If statement

Condition: C expression,
which evaluates to TRUE
(hon-zero) or FALSE (zero)
\ -
1f (condition)
action ;

/

Action: C statement, which
will be executed If
condition if IS TRUE

ECE 220 - Spring 2024 ILLINOIS

The If statement

if (x <= 10){ F

ﬁ y = X * x + 5;
}

if (x <= 10)
y = X * X + 5;

if (x <= 10){ if (x <= 10)
y = X * x + 5; B .]
y = X X + 5;

z = (2 *vy) / 3; z = (2 % y) / 3

ECE 220 - Spring 2024 ILLINOIS

Example : If statement

1f (x < 0)
X = =X; // invert x only if x < 0
F
1f ((x > 5) && (x < 25))
{
int y = x * x + 5;
}

printf(“y = %d\n”, vy);

if (x = 2){ » Always True!
y = 5; Common programming error (= instead of ==)
} not caught by compiler because it’s syntactically correct.

ECE 220 - Spring 2024 ILLINOIS

The If-else statement

1f (condition)

action_if; Else: allows choice between
> . .
two mutually-exclusive actions. T

else
action else;

Example 1 Example 2

action_else

1f ((x > 5) && (X < 25))

if (x < 0){ {
X = =X y = X * x +5;
} printf(“y = %d\n”, y);
else{ }
X =X * 2; else
} printf(“x = $f\n”, x);

ECE 220 - Spring 2024 ILLINOIS

Remark about floats

#include<stdio.h>

int main(void){
float my float = 3.14;

1f (my float==3.14)
printf("My float is PI\n");
else
printf("My float is not PI\n"); My float is not PI

double my double = 3.14;
1f (my double == 3.14)
printf("My double is PI\n"); My double is PI
else
printf("My double is not PI\n");
return 0;

Add this line to see why. What is the fix?

printf("%$lu, %lu, %lul\n", sizeof(3.14), sizeof(3.14f), sizeof(my float));

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Remark about floats

#include<stdio.h>

int main(void){
float my float = 3.14;

1f (my float==3.14f)
printf("My float is PI\n");
else
printf("My float is not PI\n"); My float is not PI

double my double = 3.14;
1f (my double == 3.14)
printf("My double is PI\n"); My double is PI
else
printf("My double is not PI\n");
return 0;

Add this line to see why. What is the fix?

printf("%$lu, %lu, %lul\n", sizeof(3.14), sizeof(3.14f), sizeof(my float));

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Chaining if-else

if (month == | | month == | | month == | | month == 11){
printf(“Month has 30 days. \n”);
}
else if (month == 1 || month == 3 || month == 5 ||
month == 7 || month == 8 || month == 10| |
month == 12){
printf (“Month has 31 days. \n”);
}
else 1f (month == 2){
printf(“Month has 28 or 29 days. \n”);
}
else(
printf(“Don’t know that month. \n”);
}

ECE 220 - Spring 2024 ILLINOIS

The switch statement

Evaluate
Expression
True)
oo }—

False
True _
Lo -
False

if
else 1if
else 1if

else

switch (expression)
{
case const 1:
action 1;
break;
case const 2:
action 2;
break;
default:
default action;
break;

}

// notice the use of break

If break is not used, then cases fall through!

UNIVERSITY OF
ILLINOIS
URDAMNA-C-AMPAIGH

ECE 220 - Spring 2024

The switch statement

a = 1;
switch(a){ a = 1;
case 1: switch(a){
printf("A"); case 1:
break; printf("A");
case 2: case 2:
printf("B"); printf("B");
break; default:
default: printf("C");
printf("C"); }
break;
}
Output: A Output : ABC

ECE 220 - Spring 2024 ILLINOIS

The while / do-while statement

while statement do-while statement

*Loop body may or may not be executed - Loop body will be executed at least once
even once
| | * Test is evaluated after executing loop
* Test is evaluated before executing the body
loop.

while(test){ do{

loop_body; loop_ body;
| sk | junide (vest);

True @

False

ILLINOIS

ECE 220 - Spring 2024

The while / do-while statement

while statement do-while statement

False m

True

False

X = 0; do
while (x < 10) printf (“x=%d\n"”, x++);
printf (“x=%d\n”, x++); while (x < 10);

ECE 220 - Spring 2024 ILLINOIS

The for statement

for (x = 0; x < 10; x++)

{

printf (“x=%d\n"”, Xx);
}
for (x = 0; x < 10; x++)
{

1f (x == 5)

break;

printf (“x=%d\n"”, Xx);

}

for (init; end-test; update)
statement

ECE 220 - Spring 2024 ILLINOIS

break vs. continue

e break for (1 = 0; 1 < 10; i++){
if(i == 5)
* Used only in switch or iteration break;

statement printf("sd ",1);

}

 Used to exit a loop before terminating

condition occurs Output:0 1 2 3 4

e continue | | |
for (r = 0; 1 < 10; 1++){
 Used only in iteration statement if (I ==5)
continue;
* End the current iteration and start the printf("%d ",1i);
next }

Output: 0 1 2 3 4 6 7 8 9

ILLINOIS

ECE 220 - Spring 2024

Exercises

* Write a program that prompts and accepts an integer valued
temperature reading in Fahrenheit and displays its decimal
equivalent in degrees Celsius.

* Can you modify the program to keep running until the user
enters a temperature below absolute zero in Fahrenheit?

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Exercises

 Write a program that prompts and accepts an integer n from the

user and then provided that 1 < n < 8, prints out a n X n identity
matrix to the console.

 How would you modify the program to make it print out a lower
triangular or upper triangular identity matrix?

1 0 0
1 0
1

—_— O O O

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Exercise

* Can you rewrite using switch case?

if (month == || month == || month == | | month == 11){
printf(“Month has 30 days. \n”);
}
else if (month == 1 || month == 3 || month == 5 ||
month == 7 || month == 8 || month == 10| |
month == 12){
printf (“Month has 31 days. \n”);
}
else 1if (month == 2){
printf (“Month has 28 or 29 days. \n”);
}
else{
printf(“Don’t know that month. \n”);
}

ECE 220 - Spring 2024 ILLINOIS

Exercise

* Can you rewrite using switch case?

switch(n){
case 1: case 3: case 5: case 7: case 8: case 10: case
12

printf("Month has 31 days!\n");
break;

case 4: case 6: case 9: case 11:
printf ("Month has 30 days!\n");
break;

case 2:
printf("Month has 28 or 29 days!\n");
break;

default:
printf("Do not know that month!\n");

ECE 220 - Spring 2024 ILLINOIS

