ECE220

Lecture x0012 - 03/26
Linked lists - stacks & queues

ECE 220 - Spring 2024 ILLINOIS

Recap

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday

 Dynamic memory allocation:
malloc, calloc,
realloc, free

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday
 Dynamic memory allocation:
malloc, calloc,

realloc, free

 Two dimensional arrays

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday
 Dynamic memory allocation:
malloc, calloc,
realloc, free

 Two dimensional arrays

 Reading/writing structs to
files

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday

 Dynamic memory allocation:
malloc, calloc,
realloc, free

 Two dimensional arrays

 Reading/writing structs to
files

 Examples

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday e Last week - Thursday
 Dynamic memory allocation:
malloc, calloc,
realloc, free

 Two dimensional arrays

 Reading/writing structs to
files

 Examples

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday e Last week - Thursday
 Dynamic memory allocation: * Linked lists
malloc, calloc,
realloc, free

 Two dimensional arrays

 Reading/writing structs to
files

 Examples

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday e Last week - Thursday
 Dynamic memory allocation: * Linked lists
malloc, calloc,
realloc, free Traversal

 Two dimensional arrays

 Reading/writing structs to
files

 Examples

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday e Last week - Thursday
 Dynamic memory allocation: * Linked lists
malloc, calloc,
realloc, free Traversal
 Two dimensional arrays |nsertion - head, tail, sorted

 Reading/writing structs to
files

 Examples

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Recap

 Last week - Tuesday e Last week - Thursday
 Dynamic memory allocation: * Linked lists
malloc, calloc,
realloc, free Traversal
 Two dimensional arrays |nsertion - head, tail, sorted
 Reading/writing structs to Deletion - head, tail, middle
files
 Examples

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Reminders

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Reminders

« Exam on 03/28, study study!

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Reminders

« Exam on 03/28, study study!

e Study material has been
posted

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Reminders

« Exam on 03/28, study study!

e Study material has been
posted

* Lectures 7 through 15
iInclusive

ECE 220 - Spring 2024 UNIVERSITY oF

ILLINOIS

Reminders

« Exam on 03/28, study study!

e Study material has been
posted

* Lectures 7 through 15
iInclusive

e HKN review session
material i1s available

ECE 220 - Spring 2024 ILLINOIS

Reminders

 Exam on 03/28, study study! * About the exam

e Study material has been
posted

* Lectures 7 through 15
iInclusive

e HKN review session
material i1s available

ECE 220 - Spring 2024 ILLINOIS

Reminders

 Exam on 03/28, study study! * About the exam
e Study material has been Paper-format (same as last
posted time)

* Lectures 7 through 15
iInclusive

e HKN review session
material i1s available

ECE 220 - Spring 2024 ILLINOIS

Reminders

 Exam on 03/28, study study! * About the exam
e Study material has been Paper-format (same as last
posted time)
e Lectures 7 through 15 * Four questions
Inclusive

e HKN review session
material i1s available

ECE 220 - Spring 2024 ILLINOIS

Reminders

 Exam on 03/28, study study! * About the exam
e Study material has been Paper-format (same as last
posted time)
e Lectures 7 through 15 * Four questions
Inclusive

* Arrays & recursion (in C)
e HKN review session

material 1s available

ECE 220 - Spring 2024 ILLINOIS

Reminders

 Exam on 03/28, study study! * About the exam
e Study material has been Paper-format (same as last
posted time)
e Lectures 7 through 15 * Four questions
Inclusive

* Arrays & recursion (in C)
e HKN review session

material is available e C2LC3 conversion,
concept questions

ECE 220 - Spring 2024 ILLINOIS

Review - singly linked lists (plain)

ECE 220 - Spring 2024

Review - singly linked lists (plain)

add at head

If head==NULL

else

ECE 220 - Spring 2024

Review - singly linked lists (plain)

add_at_talil

If cursor==NULL

add at head

If head==NULL

else else

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (plain)

add at head add_at_talil

If head==NULL If cursor==NULL

else else

UNIVERSITY Q=

ECE 220 - Spring 2024 ILLINOIS

Review - singly linked lists (plain)

add at head add_at _tail D

If cursor==NULL

If head==NULL

else else

UNIVERSITY Q=

ECE 220 - Spring 2024 ILLINOIS

Review - singly linked lists (plain)

add at head add_at _tail D

If cursor==NULL

If head==NULL

else

else

print_list

If head==NULL

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (plain)

add at head add_at _tail D

If head==NULL If cursor==NULL

else else

print_list D

If head==NULL

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (plain)

add at head add_at _tail D

If head==NULL If cursor==NULL

else else

print_list D

If head==NULL

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (plain)

add at head add_at _tail D

If head==NULL If cursor==NULL

else else

print_list D

If head==NULL

else print and ...

UNIVERSITY Q=

ECE 220 - Spring 2024 ILLINOIS

LIS

Review - singly linked lists (sorted)

add at head

If head==NULL

else

print_list D

If head==NULL

else print and ...

UNIVERSITY Q=

ECE 220 - Spring 2024 ILLINOIS

LIS

Review - singly linked lists (sorted)

If head==NULL If cursor==NULL or cursor.data >new.data

else else

print_list DR

If head==NULL

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (sorted)

If head==NULL

If cursor==NULL or cursor.data >new.data

else else

print_list DR

If head==NULL

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (sorted)

If head==NULL

If cursor==NULL or cursor.data >new.data

else else

print_list DR

If head==NULL

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Review - singly linked lists (sorted)

If head==NULL

If cursor==NULL or cursor.data >new.data

else else

print_list -

if head==NULL
current.data == key

else print and ...

ECE 220 - Spring 2024 1 ILLINOIS

Cons cells

* Covering last few slides from 03/21...

Well time didn’t permit ... the next three slides can be s«ioped. | just think cons cells are cool %

\
i' ’,/ \
(4

Time permitting ... f

[

* Cons cells - the original take on linked lists

* First introduced in 1960 by the Lisp programming language
« A cons cell, by default, adds items to the beginning of the list: |
, * cons(l, cons(2, (cons 3)) gives 1->2->3 |

’ *» The function cons takes a value and pointer to head of list as |
| input |
H

* The function cons always returns pointer to head of list

|
ECE 220 - Spring 2024

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Stack using linked lists

ECE 220 - Spring 2024

Push

Stack using linked lists

ECE 220 - Spring 2024

Push

Stack using linked lists

e Firstitem in is the last item out - FILO

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

e Firstitem in is the last item out - FILO

* Two operations for data movement: Push & Pop

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

* First item in is the last item out - FILO
* Two operations for data movement: Push & Pop

o Stack top ~ head pointer/head

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

* First item in is the last item out - FILO
* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

e Push ~ add at head

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

* First item in is the last item out - FILO
* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

e Push ~ add at head

* Pop ~ remove from head

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

* First item in is the last item out - FILO

* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

* Push ~ add at head

* Pop ~ remove from head

* Need to give popped value to caller

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

e Firstitem in is the last item out - FILO

Headptr

* Two operations for data movement: Push & Pop l
o Stack top ~ head pointer/head Node 2

 Push ~ add at head l
Node 1

» Pop ~ remove from head l
» Need to give popped value to caller Node 0

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

e Firstitem in is the last item out - FILO

Headptr

* Two operations for data movement: Push & Pop l
o Stack top ~ head pointer/head Head=p»| Node 2

 Push ~ add at head l
Node 1

» Pop ~ remove from head l
» Need to give popped value to caller Node 0

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

e Firstitem in is the last item out - FILO

Headptr

* Two operations for data movement: Push & Pop l
o Stack top ~ head pointer/head Head=p»| Node 2

 Push ~ add at head l
Node 1

» Pop ~ remove from head l
» Need to give popped value to caller Tail=p»| Node (0

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

Headptr
e Firstitem in is the last item out - FILO l
* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head Head=p>| Node 2
 Push ~ add at head l
Node 1
» Pop ~ remove from head l
» Need to give popped value to caller Tail=p»| Node (0

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

Headptr

e Firstitem in is the last item out - FILO l
Node 3

* Two operations for data movement: Push & Pop l
o Stack top ~ head pointer/head Head=p>| Node 2

 Push ~ add at head l
Node 1

» Pop ~ remove from head l
» Need to give popped value to caller Tail=p»| Node (0

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Push

Stack using linked lists

Headptr

e Firstitem in is the last item out - FILO l
Head =$» Node 3

* Two operations for data movement: Push & Pop l
o Stack top ~ head pointer/head Node 2

 Push ~ add at head l
Node 1

» Pop ~ remove from head l
» Need to give popped value to caller Tail=p»| Node (0

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Stack using linked lists

* First item in is the last item out - FILO

* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

* Push ~ add at head

* Pop ~ remove from head

* Need to give popped value to caller

Head =

Tail =P

Headptr

ECE 220 - Spring 2024

UNIVERSITY OF

ILLINOIS

Stack using linked lists

* First item in is the last item out - FILO

* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

* Push ~ add at head

* Pop ~ remove from head

* Need to give popped value to caller

Head =

Tail =P

Pop

Headptr

ECE 220 - Spring 2024

UNIVERSITY OF

ILLINOIS

Stack using linked lists

* First item in is the last item out - FILO

* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

* Push ~ add at head

* Pop ~ remove from head

* Need to give popped value to caller

Head =

Tail =P

Pop

Headptr

|

ECE 220 - Spring 2024

UNIVERSITY OF

ILLINOIS

Stack using linked lists

* First item in is the last item out - FILO

* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

* Push ~ add at head

* Pop ~ remove from head

* Need to give popped value to caller

Head =

Tail =P

Pop

Headptr

ECE 220 - Spring 2024

UNIVERSITY OF

ILLINOIS

Stack using linked lists

* First item in is the last item out - FILO

* Two operations for data movement: Push & Pop
o Stack top ~ head pointer/head

* Push ~ add at head

* Pop ~ remove from head

* Need to give popped value to caller

Head =

Tail =P

Pop

Headptr

ECE 220 - Spring 2024

UNIVERSITY OF

ILLINOIS

Stack push using linked lists

Same as insert at head
void push(node **cursor, node *new){

node* temp=(node*) malloc(sizeof(node));
temp->name=new->name;
temp->byear=new->byear;
temp->next=new->next;

if (cursor == NULL)
*cursor = temp;
else{
temp->next = *cursor;

*cursor = temp;

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Stack push using linked lists

Same as insert at head

void push(node **cursor, node *new
» Suppose we want to push push(') 1

a node onto stack. node* temp=(node*) malloc(sizeof(node));

temp->name=new->name;
temp->byear=new->byear;
temp->next=new->next;

if (cursor == NULL)
*cursor = temp;
else{
temp->next = *cursor;

*cursor = temp;

ECE 220 - Spring 2024 ILLINOIS

Stack push using linked lists

Same as insert at head

void push(node **cursor, node *new
» Suppose we want to push push(') 1

a node onto stack. node* temp=(node*) malloc(sizeof(node));

temp->name=new->name;
 What needs to be done? temp->byear=new->byear:;

temp->next=new->next;

if (cursor == NULL)
*cursor = temp;
else{
temp->next = *cursor;

*cursor = temp;

ECE 220 - Spring 2024 ILLINOIS

Stack push using linked lists

Same as insert at head

void push(node **cursor, node *new
» Suppose we want to push push(') 1

a node onto stack. node* temp=(node*) malloc(sizeof(node));

temp->name=new->name;
 \WWhat needs to be done? temp->byear=new->byear:;
temp->next=new->next;
 New node should

point to current head. if (cursor == NULL)
*cursor = temp;
else{
temp->next = *cursor;

*cursor = temp;

ECE 220 - Spring 2024 ILLINOIS

Stack push using linked lists

Same as insert at head

void push(node **cursor, node *new
» Suppose we want to push push(') 1

a node onto stack. node* temp=(node*) malloc(sizeof(node));

temp->name=new->name;
 \WWhat needs to be done? temp->byear=new->byear:;
temp->next=new->next;
 New node should

point to current head. if (cursor == NULL)
*cursor = temp;
e Current head should else(
be updated to new temp->next = *cursor;
node. *cursor = temp;
}
}

ECE 220 - Spring 2024 ILLINOIS

Stack pop using linked lists

Similar to delete at head

 To pop a node from stack, we node * pop(node **headptr)
have to delete node from head 1f (*headptr==NULL)
return NULL;
e Save the data of head node else{

node * new=(node*) malloc(sizeof(node));
new->name=(*headptr)->name;

 Make a copy of the head

pomter new->byear=(*headptr)->byear;
e Shift the head pointer to its new->next = NULL;
next item
© © node *old head = *headptr;
 Call free on a copy of the *headptr = (*headptr)->next;
* Return the popped/saved return new;
node to caller }

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

ECE 220 - Spring 2024

Queue using linked lists

 First item in is the first item out - FIFO

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

 First item in is the first item out - FIFO

 Two operations for data movement: enqueue & dequeue

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Enqueue

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Enqueue
Headptr » Node O » Node 1 » Node 2 > NULL
Head Tail

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Enqueue
Headptr » Node O » Node 1 » Node 2 > Node 3 > NULL
Head Tail

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Enqueue
Headptr » Node O » Node 1 » Node 2 > Node 3 > NULL
Hild Tail

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Headptr » Node O » Node 1 » Node 2 > Node 3
Head Tail

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Dequeue
Headptr » Node O » Node 1 » Node 2 > Node 3
Head Tail

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Queue using linked lists

e First item in is the first item out - FIFO
 Two operations for data movement: enqueue & dequeue

 Dequeued item must be available for use by caller

Dequeue
Headptr » Node 1 » Node 2 > Node 3
Head Tail

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Enqueue using linked lists

ECE 220 - Spring 2024

Enqueue using linked lists

* To add (enqueue) a node to a
queue

ECE 220 - Spring 2024

Enqueue using linked lists

* To add (enqueue) a node to a
queue

e We need to first find the tall

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Enqueue using linked lists

* To add (enqueue) a node to a
queue

e We need to first find the tall
How? The only element in

the list whose next is NULL
IS the tail element.

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Enqueue using linked lists

e To add (enqueue) 3 node to a vold enqueue(node **cursor, node *new) {
if (*cursor == NULL){
queue node * temp = (node *)
malloc(sizeof (node));
* \We need to first find the tall temp->name = new->name;
temp->byear = new->byear;
_ temp->next = new->next;
How? The only element in xoursor = temp;
the list whose next is NULL }
is the tail element. else

enqueue (& (*cursor)->next, new);

ECE 220 - Spring 2024 ILLINOIS

Enqueue using linked lists

* To add (enqueue) a node to a
queue

e We need to first find the tall

How? The only element in
the list whose next is NULL
IS the tall element.

vold enqueue(node **cursor, node *new) {
if (*cursor == NULL){
node * temp = (node *)
malloc(sizeof (node));
temp->name = new->name;
temp->byear = new->byear;

temp->next = new->next;
*cursor = temp;
else

enqueue (& (*cursor)->next, new);

Same as insert at tail

ECE 220 - Spring 2024

UNIVERSITY O=
ILLINOIS
URDGANA-C-AMPAIGH

Dequeue using linked lists

ECE 220 - Spring 2024

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

e |f head empty do nothing, else,

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

e |f head empty do nothing, else,

e Save copy of current head

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

e |f head empty do nothing, else,
e Save copy of current head

 Advance head pointer and free
the memory used by old head

ILLINOIS

ECE 220 - Spring 2024

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

e |f head empty do nothing, else,
e Save copy of current head

 Advance head pointer and free
the memory used by old head

 Pass/return dequeued item to
caller

ECE 220 - Spring 2024 ILLINOIS

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

e |f head empty do nothing, else,
e Save copy of current head

 Advance head pointer and free
the memory used by old head

 Pass/return dequeued item to
caller

Same as delete at head!

ECE 220 - Spring 2024 ILLINOIS

Dequeue using linked lists

* To delete (dequeue) a node from
the queue

e |f head empty do nothing, else,
e Save copy of current head

 Advance head pointer and free
the memory used by old head

 Pass/return dequeued item to
caller

node * dequeue(node **headptr) {
if (*headptr==NULL)
return NULL;
else{
node* new=(node*)
malloc(sizeof (node));
new->name=(*headptr)->name;
new->byear=(*headptr)->byear;

node *old head = *headptr;
*headptr = (*headptr)->next;
free(old head);

return new;

} Same as delete at head!

UNIVERSITY OF

ECE 220 - Spring 2024

ILLINOIS

Exercise(s)

* Given a sorted linked list, implement binary search on the list
node * binary search(*headptr, char * key)
 Return a NULL pointer if the element is not found

* Otherwise return a pointer to the element.

* Hint: Write a function to get the middle element in a linked list

How do you find the middle element in a linked list?

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Finding middle of a linked list

#include <stdio.h>

int main(void){

int 1, target, 7j;

printf ("Enter a target number:\t");

scanf("%d", &target);

(J=0, 1=0; j<target; i++, J++)
J++;

printf("Midway to target 1is %d", 1);

'

ECE 220 - Spring 2024 ILLINOIS

Exercise(s)

* Given two sorted linked lists write a function that takes the two
head pointers and returns a pointer to a merged list

e Sort order must be maintained. Basic idea ...

* Traverse both lists until one of them ends, then copy over the
remaining list

* During traversal add new nodes in sorted order

See (click): Full Code on Gitlab!

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

https://gitlab.engr.illinois.edu/itabrah2/ece220-sp24/-/blob/f6f5f7628af47158f4b23ef9d0935706c258ba1e/lec0326/linkedlists.c

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next
element.

ECE 220 - Spring 2024 ILLINOIS

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next
element.

 Advantages:

ECE 220 - Spring 2024 ILLINOIS

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next
element.

 Advantages:

 Allows backward and forward
traversal

ECE 220 - Spring 2024 ILLINOIS

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next
element.

 Advantages:

 Allows backward and forward
traversal

 Easier to delete a node - why?

ECE 220 - Spring 2024 ILLINOIS

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next
element.

 Advantages: Disadvantages

 Allows backward and forward
traversal

 Easier to delete a node - why?

ECE 220 - Spring 2024 ILLINOIS

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next

element.
 Advantages: Disadvantages
* Allows backward and forward Takes up more memory.
traversal

 Easier to delete a node - why?

ECE 220 - Spring 2024 ILLINOIS

Doubly linked list

Head Tall

| g

A doubly linked list maintains a pointer to both the previous as well as the next

element.
 Advantages: Disadvantages
* Allows backward and forward Takes up more memory.
traversal
* Increased bookkeeping,
 Easier to delete a node - why? therefore performance overhead

ECE 220 - Spring 2024 ILLINOIS

Doubly linked lists

* First there will be a change to the
struct definition

* Need to modify insertion/deletion typedef struct person{
functions so that prev and next are char *name:
maintained. unsigned int byear;

struct person *next;
* |nsert at head struct person *prev;
}node;

e |nsert at tall

To be continued next time ...
ILLINOIS

ECE 220 - Spring 2024

