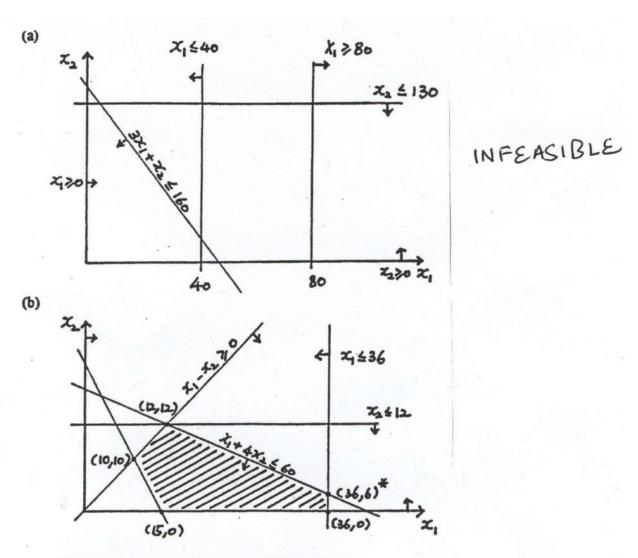
Variables:

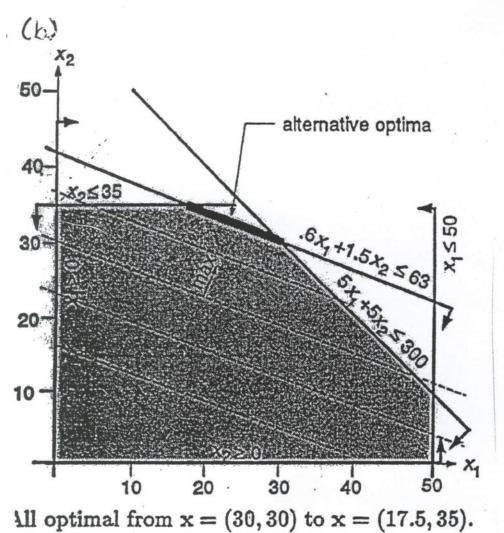
	shiped from city 1 to city 2.
	shiped from city 1 to city 3.
x_{23} - No. of units	shiped from city 2 to city 3.
x_{24} - No. of units	shiped from city 2 to city 4.
x_{34} - No. of units	shiped from city 3 to city 4.
x_{35} - No. of units	shiped from city 3 to city 5.
	shiped from city 5 to city 6.
x_{23} - No. of units x_{24} - No. of units x_{25} - No. of units x_{34} - No. of units x_{35} - No. of units x_{46} - No. of units x_{54} - No. of units	shiped from city 2 to city 3. shiped from city 2 to city 4. shiped from city 2 to city 5. shiped from city 3 to city 4. shiped from city 3 to city 5. shiped from city 4 to city 6. shiped from city 5 to city 4.


Constraints:

$x_{12} + x_{13}$	=	30
$x_{46} + x_{56}$	=	30
$x_{12} - x_{23} - x_{24} - x_{25}$	=	0 (Node 2 conservation).
$x_{13} + x_{23} - x_{34} - x_{35}$	=	0 (Node 3 conservation)
$x_{24} + x_{34} + x_{54} - x_{46}$	=	0 (Node 4 conservation)
$x_{25} + x_{35} - x_{54} - x_{56}$	=	0 (Node 5 conservation)
$0 \le x_{12} \le 17$		(Capacity of arc 12)
$0 \leq x_{13} \leq 25$		(Capacity of arc 13)
$0 \leq x_{23} \leq 5$		(Capacity of arc 23)
$0 \le x_{24} \le 10$		(Capacity of arc 24)
$0 \le x_{25} \le 5$		(Capacity of arc 25)
$0 \le x_{34} \le 15$		(Capacity of arc 34)
$0 \le x_{35} \le 20$		(Capacity of arc 35)
$0 \le x_{46} \le 18$		(Capacity of arc 46)
$0 \leq x_{54} \leq 5$		(Capacity of arc 54)
$0 \le x_{56} \le 17$		(Capacity of arc 56)

Objective:

 $\begin{array}{l} \text{Min } Z = 2x_{12} + x_{13} + 3x_{23} + x_{24} + 3x_{25} \\ + 2x_{34} + 5x_{35} + 2x_{46} + 6x_{54} + 3x_{56} \end{array}$


The addition of a constant, K, to the objective function does not affect the optimal solution. However, the optimal value will increase (or decrease) by the magnitude of K, depending on the sign of K.

Problem 3

Optimal solution: $x_1=36$; $x_2=6$; Max Z=312.

(a) max $200x_1 + 350x_2$ (max total profit), s.t. $5x_1 + 5x_2 \le 300$ (legs), $0.6x_1 + 1.5x_2 \le 63$ (assembly hours), $x_1 \le 50$ (wood tops), $x_2 \le 35$ (glass tops), $x_1 \ge 0$, $x_2 \ge 0$

max $.11x_1 + .17x_2$ (max total return), s.t. $x_1 + x_2 \le 12$ (\$12 million investment), $x_1 \le 10$ (max \$10 million domestic), $x_2 \le 7$ (max \$7 million foreign), $x_1 \ge .5x_2$ (domestic at least half foreign), $x_2 \ge .5x_1$ (foreign at least half lomestic), $x_1 \ge 0$, $x_2 \ge 0$

Problem 6

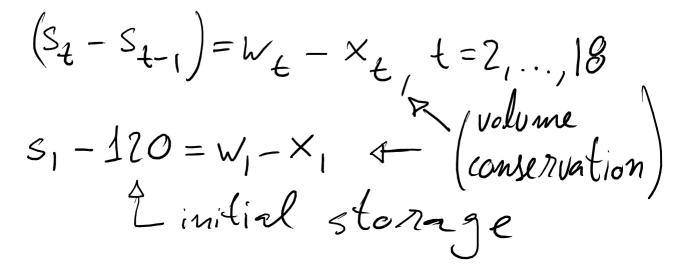
719 x_{12} (min total cost), 1.t. $x_4 + x_5 + x_6 + x_9 + x_{12} = 16000$ (16000m ine), 279 x_4 +.160 x_5 +.120 x_6 +.065 x_9 +.039 $x_{12} \le 1600$ at most 1600 Ohms resistance), 00175 x_4 + .00130 x_5 + .00161 x_6 + .00095 x_9 + 00048 $x_{12} \le 8.5$ (at most 8.5 dBell attenuation), $x_4, x_5, x_6, x_9, x_{12} \ge 0$

Problem 7

(a) We must decide what quantities to move from surplus sites to fulfill each need.
(b) s_i ≜ the supply available at i, r_j ≜ the quantity needed at j, d_{i,j} ≜ the distance from i to j.
(c) min ∑⁴_{i=1} ∑⁷_{j=1} d_{i,j}x_{i,j}
(c) ∑⁷_{j=1} x_{i,j} = s_i, i = 1, ..., 4
(d) ∑⁴_{i=1} x_{i,j} = r_j, j = 1, ..., 7

 $\min \sum_{j=1}^{7} \left(\underline{c}_j + (t_j - \underline{t}_j)(\overline{c}_j - \underline{c}_j) / (\overline{t}_j - \underline{t}_j)\right) \pmod{(\min \text{ sum of interpolated task costs)},$ s.t. $s_3 \ge s_2 + t_2$ (2 precedes 3); $s_4 \ge s_1 + t_1$ (1 precedes 4); $s_4 \ge s_2 + t_2$ (2 precedes 4); $s_5 \ge s_3 + t_3$ (3 precedes 5); $s_6 \ge s_3 + t_3$ (3 precedes 6); $s_7 \ge s_4 + t_4$ (4 precedes 7); $s_j + t_j \le 40$, $j = 1, \ldots, 7$ (task j complete within 40 days); $s_j \ge 0, j = 1, \ldots, 7; t_j \ge 0, j = 1, \ldots, 7;$ where \underline{t}_j and \overline{t}_j are the given min and max times for task j, and \underline{c}_j and \overline{c}_j are the corresponding min and max costs.

Problem 9


. min $\sum_{i=1}^{24} \sum_{m=1}^{8} \sum_{j=1}^{113} c_{i,m,j} x_{i,m,j}$ (min total cost), s.t. $\sum_{m=1}^{8} \sum_{j=1}^{113} x_{i,m,j} \leq s_i$, $i = 1, \ldots, 24$ (supply limit in mining region i); $\sum_{i=1}^{24} a_{i,m} x_{i,m,j} = d_{m,j}$, $m = 1, \ldots, 8$, $j = 1, \ldots, 113$ (demand for coal type m in region j); all variables nonnegative

Vroblem 20 top lower gate gate $x_{t} \rightarrow \frac{1}{1}$

Rt-outflow reference at time t $d_{t}^{\dagger} = \begin{cases} W_{t} - R_{t} & \text{if } W_{t} > R_{t} \\ 0 & \text{othorwise} \end{cases} \qquad f = 1, ..., 18$ $d_{t} = \begin{cases} R_{t} - W_{t} & \text{if } R_{t} > W_{t} \\ 0 & \text{otherwise} \end{cases}$

 $\sum_{t=1}^{18} w_t \ge \frac{18}{2} R_t \quad (3^{nd} \text{ sentence})$

 $S_t \leq U$, t = 1, ..., 18 (maximum) (storage)

Since we defined dit and dit as nonlinear functions of Wt, We must replace We with the appropriate expression: $W_{t} = d_{t}^{+} - d_{t}^{-} + R_{t}$ The formulation then becomes: min $d_t + d_t$ $\frac{\frac{10}{2}}{\frac{1}{2}}\left(d_{t}^{+}-d_{t}^{-}\right) \geqslant O$ $S_t \leq U$, $t = 1, \dots, 18$ $(s_{t} - s_{t-1}) = d_{t}^{+} - d_{t}^{-} R_{t} - x_{t}, t = 2, ..., 18$ $s_{1} - 120 = d_{1}^{+} - d_{1}^{-} + R_{1} - x_{1}$