HOMEWORK_3 SOLUTIONS

Problem_1

X 1 : pounds of pure steel
X2 : pounds of scrap metal
a)

Objective: $\min Z=3 X_{1}+6 X_{2}$
Constraints:

$$
\begin{aligned}
& 3 \boldsymbol{X}_{1}+2 \boldsymbol{X}_{2} \leq 18 \\
& \boldsymbol{X}_{1}+\boldsymbol{X}_{2} \geq 5 \\
& 8 \boldsymbol{X}_{2}-7 \boldsymbol{X}_{1} \leq 0 \\
& \boldsymbol{X}_{1} \leq 4, \boldsymbol{X}_{2} \leq 7
\end{aligned}
$$

b)

The optimal solution is obtained at $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(4,1)$
$3(4)+6(1)=18$
4 pounds of pure steel and 1 pound of scrap metal should be used.

Problem_2

Decision variables: X_{A}, X_{B}, X_{C}

Objective:

$$
\min Z=16 X_{A}+30 X_{B}+50 X_{C}
$$

Constraints:

$$
\begin{aligned}
& X_{A} \geq 20, X_{B} \geq 120, X_{C} \geq 60 \\
& \frac{1}{12}\left(3 X_{A}+3.5 X_{B}+5 X_{C}\right) \leq 120 \\
& \frac{1}{12}\left(4 X_{A}+5 X_{B}+8 X_{C}\right) \leq 160 \\
& \frac{1}{12}\left(X_{A}+1.5 X_{B}+3 X_{C}\right) \leq 48
\end{aligned}
$$

CLONE MANUFACTURING COMPANY

\square Notation:

N manufacturers :

$$
j=1,2, \ldots, N
$$

M plants
:

$$
i=1,2, \ldots, M
$$

D classes
:

$$
k=1,2, \ldots, D
$$

plant i requires $\boldsymbol{R}_{i k}$ boards

$$
\begin{aligned}
i & =1, \ldots, M \\
k & =1, \ldots, D
\end{aligned}
$$

CLONE MANUFACTURING COMPANY

$x_{j}=$ number of boards from manufacturer j
$c_{j}=$ costs per board from manufacturer j
$U_{j}=$ maximum number of boards from manufacturer \boldsymbol{j}
$p_{j k}=\quad$ fraction of class \boldsymbol{k} boards from manufacturer \boldsymbol{j}
$c_{j i}=$ costs of shipping per board from manufacturer \boldsymbol{j} to plant \boldsymbol{i}
$j \quad=1, \ldots, N \quad i=1, \ldots, M \quad k=1, \ldots, D$

CLONE MANUFACTURING COMPANY

Observations:

$$
p_{j k} \geq 0 \quad \text { and } \quad \sum_{k=1}^{D} p_{j k}=1 \quad j=1, \ldots, N
$$

\square Decision variables:
$x_{j}=$ number of boards from manufacturer \boldsymbol{j}
$x_{j i}=$ number of boards shipped from manufacturer \boldsymbol{j} to plant \boldsymbol{i}
\square Objective:

$$
\min \sum_{j=1}^{N} c_{j} x_{j}+\sum_{j=1}^{N} \sum_{i=1}^{M} c_{j i} x_{j i}
$$

CLONE MANUFACTURING COMPANY

Constraints:

$$
\begin{array}{rlrl}
\sum_{j=1}^{N} p_{j k} x_{j i} & =R_{i k} & k=1,2, \ldots, D, i=1, \ldots, M \\
x_{j} & \leq U_{j} & j=1,2, \ldots, N \\
\sum_{i=1}^{M} x_{j i} & \leq x_{j} & j=1,2, \ldots, N \\
x_{j} & \geq 0 & j=1,2, \ldots, N \\
x_{j i} & \geq 0 & j=1,2, \ldots, N \quad i=1,2, \ldots, M
\end{array}
$$

FAYE STOUT COMPANY : NOTATION

$x_{i j k}=$ quantity of fiber k shipped to customer i

fiber \boldsymbol{j} requested

$$
k=j
$$

product demanded is the product shipped $k \neq j$
a substitute product is shipped

FAYE STOUT COMPANY : NOTATION

$q_{i j}=$ quantity of fiber \boldsymbol{j} demanded by customer i
$A_{\boldsymbol{j}}=$ quantity of fiber \boldsymbol{j} available for shipment
$c_{j k}=$ costs per unit of shipping fiber \boldsymbol{j} to customer i who ordered fiber \boldsymbol{j} and the term may include a penalty for substitution

Note : whenever substitution is not allowed, such a penalty is made very large

FAYE STOUT COMPANY : NOTATION

$x_{j}=$ fraction of every customer's order for
fiber \boldsymbol{j} that is met with fiber \boldsymbol{j} and permitted substitutes
x_{j} is uniform for each customer i
$d_{i j}=$ penalty per unit of fiber \boldsymbol{j} ordered by
customer \boldsymbol{i} but not filled with fiber \boldsymbol{j}
and permitted substitutes

FAYE STOUT COMPANY : INFORMATION PROVIDED

$\Phi_{j}=$ fair share for fiber \boldsymbol{j}
quantity of fiber received
$.95 \Phi_{j} \leq \quad$ by customer i of fiber in $\leq 1.05 \Phi_{j}$ short supply

FAYE STOUT COMPANY : FLOWS

$q_{i j}$ are fixed and known data

FAYE STOUT COMPANY : FLOWS

fiber \boldsymbol{j} delivery to customers

FAYE STOUT COMPANY : FLOWS

availability of fiber \boldsymbol{j} is $\boldsymbol{A}_{\boldsymbol{j}}$;however demand is
$\sum_{i=1}^{C} q_{i j}=Q_{j} \leftarrow$ total demand for fiber $\boldsymbol{j}[$ fixed $]$
fair share is defined by

$$
\Phi_{j} \triangleq \frac{A_{j}}{Q_{j}} \leftarrow \text { fixed parameter for } j=1,2, \ldots, F
$$

fiber \boldsymbol{j} is in short supply if and only if

$$
\Phi_{j}<\mathbf{1}
$$

FAYE STOUT COMPANY : DECISION VARIABLES

$x_{i j k}=$ amount of fiber sent to meet customer
\boldsymbol{i} 's demand for fiber \boldsymbol{j}
$y_{i j}=$ amount of fiber \boldsymbol{j} not supplied to
customer i, or more precisely, amount
of fiber \boldsymbol{j} ordered by customer \boldsymbol{i} but not
filled with either fiber \boldsymbol{j} or permitted
substitutes

FAYE STOUT COMPANY : OBJECTIVE

penalties incurred for items not supplied

$$
\underbrace{\sum_{i=1}^{C} \sum_{j=1}^{F} d_{i j} y_{i j}}
$$

FAYE STOUT COMPANY : CONSTRAINTS

O balance

$$
\sum_{k=1}^{F} x_{i j k}+y_{i j}=q_{i j} \begin{aligned}
& i=1, \ldots, C \\
& j=1, \ldots, F
\end{aligned}
$$

O availability

$$
\sum_{i=1}^{C} x_{i j j} \quad \leq A_{j} \quad j=1, \ldots, F
$$

O uniform fraction of order filled for fiber \boldsymbol{j}

$$
\frac{1}{q_{i j}} \sum_{k=1}^{F} x_{i j k} \quad=x_{j} \quad i=1,2, \ldots, C
$$

FAYE STOUT COMPANY : CONSTRAINTS

O fair share constraints

$$
j=1,2, \ldots, F
$$

$0.95 \Phi_{j} \leq X_{j} \leq 1.05 \Phi_{j}$
such that $\Phi_{j}<1$
O nonnegativity

$$
\begin{aligned}
& x_{i j k} \geq 0 \\
& y_{i j} \geq 0
\end{aligned} \quad \forall i, \forall j, \forall k, \forall j
$$

THE MONTY ZOOMA COMPANY

\square Problem data:
O 18 - month production schedule
O each worker produces 300 bottles per month
O storage from month t to month $\boldsymbol{t}+1$ incurs a 5\% loss
$\bigcirc n_{0}=50$ workers and for each month t
O each month $t\left\{\begin{array}{l}\text { new workers hired } \\ \text { old workers released } \\ \text { workers kept idle }\end{array}\right.$

THE MONTY ZOOMA COMPANY

O attrition rates for workers are

$$
\begin{array}{ll}
10 \% & \text { for idle } \\
1 \% & \text { for productive }
\end{array}
$$

D Decision variables are associated with costs
$c_{t} \leftrightarrow e_{t}=$ number of workers in production
$h_{t} \leftrightarrow x_{t}=$ number of workers hired
$f_{t} \leftrightarrow y_{t}=$ number of workers released
$n_{t} \leftrightarrow d_{t}=$ number of workers idle
decisions at the beginning of each month t

THE MONTY ZOOMA COMPANY

month $t=1,2, \ldots, 18$
$i_{t} \leftrightarrow s_{t}=$ bottles in storage at the end of the month t
$S_{t}=$ number of bottles sold in month t
\square Terminal constraints are given by

$$
s_{18} \geq I / 0.95
$$

work force at $t=19 \geq W$

THE MONTY ZOOMA COMPANY

\square The objective is to minimize the costs of production

O we ignore costs of resources other than labor for period t and so costs are employment plus storage for each month t

$$
c_{t} e_{t}+h_{t} x_{t}+f_{t} y_{t}+n_{t} d_{t}+i_{t} s_{t}
$$

O the objective is

$$
\min \sum_{t=1}^{18}\left[c_{t} e_{t}+h_{t} x_{t}+f_{t} y_{t}+n_{t} d_{t}+i_{t} s_{t}\right]
$$

THE MONTY ZOOMA COMPANY : CONSTRAINTS

O work-force constraints:

period 1

$$
\begin{array}{lll}
50+x_{1}-y_{1} & = & e_{1}+d_{1} \\
.99 e_{1}+.9 d_{1}+x_{2}-y_{2} & = & e_{2}+d_{2}
\end{array}
$$

THE MONTY ZOOMA CORPORATION

general relationship

$.99 e_{t-1}+.9 d_{t-1}+x_{t}-y_{t}=e_{t}+d_{t} \quad t=2, \ldots, 18$
terminal requirement

$$
.99 e_{18}+.9 d_{18} \geq W
$$

THE MONTY ZOO CONS o production levels

general relationship

$$
300 e_{t}=S_{t}+s_{t}-.95 s_{t-1} \quad t=1, \ldots, 18
$$

terminal requirements

$$
s_{0}=0 \quad .95 s_{18} \geq I
$$

THE MONTY ZOOMA CORPORATION : PROBLEM STATEMENT

$$
\begin{gathered}
\min \sum_{t=1}^{18}\left\{c_{t} e_{t}+h_{t} x_{t}+f_{t} y_{t}+n_{t} d_{t}+i_{t} s_{t}\right\} \\
e_{1}+d_{1}-x_{1}+y_{1}=50
\end{gathered}
$$

$$
.99 e_{t-1}+.9 d_{t-1}+x_{t}-y_{t}-e_{t}-d_{t}=0 \quad t=2, \ldots, 18
$$

$$
.99 e_{18}+.9 d_{18} \geq W
$$

$$
300 e_{1}-s_{1}=S_{1}
$$

$$
300 e_{t}-s_{t}+0.95 s_{t-1}=S_{t} \quad t=2, \ldots, 18
$$

$$
0.95 s_{18} \geq I
$$

$$
e_{t}, x_{t}, y_{t}, d_{t}, s_{t}, \geq 0
$$

