Homework 5 Solutions:

1) Solve using the Hungarian Method:

	bids	T.	gain	ten		7	
	house		12	13	14	7	Scubtract 1.3 from - Seach element
	1002	2.5	1.3	3.6	1.8	_1.3 ←	- Leach element
	9	2.9	1.4	5.0	2.2	-14	(in this now
	2	2.2	1.6	3.2	24	-1.6	(113 700
1	4	3.1	18	4	2.5	-18	
Ĺ			1.0			0	

bids painter

house 1 2 3 4

1 1.2 0 2.3 0.5

2 1.5 0 3.6 0.8

3 0.6 0 1.6 6.8

4 1.3 0 2.2 0.7

subtract 0.5 element in this painter bids column house 0.6 0.7 0 0.9 0.3 -0.3 0.3 0 -0.2 0.7 0.2 0.6 +0.3

	bids		pain	ter		\neg
	house	06	0.3	3	14	-0.3
	2	0.6	0	1.7	0	, ,
	3	0	0.3	0	0.3	
L	4	0.5	0.1	0.4	0	1-0.1

	bids		pain	ter		=
	house	1	2	3	14	\neg
	l	0.6	0.3	0.7	10	-0.3
	2	0.6	0	1.7		5
I	3	0	0-3	0	0.3	>
	4	0.5	0.1	0.4	0	-0.
		-			+0.3	

	bids		painter						
1	house	1	12	3	14	\Box			
١	l	0.3	0.3	0.4	0	-0.3			
1	2	0.6	o	1,7	0.3	-0.6			
I	3	0	0.3	0	0.6				
	4	0.4	0	0.3	0.3	- 6.3			
_			10.6		16.3	+			

bids		painten						
house	1	2	13	14	7			
l	0			(0)				
2		(0)		O				
3	(0)		Q					
4			Ø					

Notation:

 $x_{ij} = 1 = > house i gets painted by painter j$ $x_{ij} = 0 = > house i does not get painted by painter j$

Optimal solution:

$$x_{14} = x_{22} = x_{31} = x_{43} = 1$$
, all other $x_{ij} = 0$

Problem 2:

$$X_{ij} \leq \sqrt{lan}$$
 in barrels / day from i to j with $i,j = \{F1, F2, A, B, R\}$
 $Min.$.10 $X_{Fi,A} + .35 X_{Fi,B} + .25 X_{F2,A} + .56 X_{F2,B}$
 $f. 12 X_{A,B} + .12 X_{A,B} + .40 X_{A,K} + .33 X_{B,K}$
 $S.t.$ $X_{Fi,A} + X_{Fi,B} \leq 1500$
 $X_{Fi,A} + X_{Fi,A} + X_{B,A} - X_{A,B} - X_{A,K} = 0$
 $X_{Fi,A} + X_{Fi,A} + X_{B,A} - X_{A,B} - X_{A,K} = 0$
 $X_{Fi,B} + X_{A,B} + X_{A,B} - X_{B,A} - X_{B,K} = 0$
 $X_{A,K} + X_{B,K} = 2000$
 $X_{A,K} + X_{B,K} = 2000$

By introducing a dummy market we construct a 2x2 standard transportation problem with data given in the following table:

ſ	Re finery1	Re finery2	Total
Field1	1,500	0	1,500
Field 2	500	700	700
Total	2,000	700	2,700

Where the cost from Field 1 to Refinery 1 is 0.5 and 0 for Refinery 2. The cost from Field 2 to Refinery 1 is 0.65 and 0 to Refinery 2.

Then by inspection:

$$x_1^* = 1,500$$

 $x_2^* = 500$

all processed through Axel

Problem 3:

The formulation of the problem into a transportation problem is given in the table below; with the entry c_{ij} in the matrix representing the costs from node i to node j.

1	Vode	1	2	3	4	5	6	total sup ply
	1	∞	2	1	∞	∞	∞	30
	2	∞	∞	3	1	3	∞	20
	3	∞	∞	∞	2	5	∞	35
	4	∞	∞	∞	∞	∞	2	18
	5	∞	∞	∞	6	∞	3	22
	6	∞	∞	∞	∞	∞	∞	0
total	demand	0	17	30	30	25	30	

One basic feasible solution could be:

$$x_{12} = 8$$
, $x_{13} = 22$, $x_{23} = 0$, $x_{24} = 3$, $x_{25} = 5$, $x_{34} = 15$, $x_{35} = 7$, $x_{56} = 12$, $x_{46} = 18$ total cost: \$193

Problem 4:

(a), (b) and (c)

	ν ₁ =7	v ₂ =6	ν ₃ =2	v ₄ =5	_
u ₁ =0	② 7	30-θ 6	5	+θ 4	50
u ₂ =1	9	(10)+θ 7	30 3	1 0-в	50
u ₃ =-2	8	8	7	<u> </u>	50
	20	40	30	60	Г

 $\overline{c}_{14} < 0$. x_{14} enters. x_{24} leaves. Max $\theta = 10$.

	v ₁ =7	v ₂ =6	v ₃ =2	v ₄ =4
u ₁ =0	20 7	@	5	10 4
u ₂ =1	9	@ ₇	30 3	6
u ₃ =-1	8	8	7	® 3
	20	40	30	60

Optimal solution; Min Z = \$680.

The new objective function becomes:

Min Z = (old Z) + 1
$$(x_{11} + x_{21} + x_{31})$$

= (old Z) + 1 (20)

Thus this change is equivalent to adding a constant to the objective function. Hence optimal solution will not change but the least cost of bussing will increase by \$20.

Problem 5:

a. Let Machines <--> Days
 Jobs <--> Courses

 $X_{ij} = 1$ if course j is assigned to Day i.

Adding a dummy course with zero costs, we get a standard assignment problem with 5 machines and 5 jobs.

 Subtract the smallest element in each column from all elements in that column gives the following:

	J_1	J_2	J_3	J_4	J_5	
I_1	- 40-	-20 -	-50-	-0-	-0-	ŀ
12	30	10	30	10	0	1
1,	-58 -	-0-	- 20-	0-	-9-	ŀ
L	20	10	10	10	0	1
1,	-0-	-0-	0 -	40-	-0-	1

Only 4 assignments are possible with zero cells. Cover all zeros with 4 lines. The smallest element 10 from the uncovered cells is subtracted to give the next table.

	J_1	J_2	J_3	J_4	J_5
I_1	40	20	50	0	10
I_2	20	0	20	0	0
I_3	50	0	20	0	10
I_4	10	0	0	0	0
I_5	0	0	0	10	10

The optimal assignment:

Monday <-> Bioengineering

Wednesday <-> Energy
Thursday <-> Transportation

Friday <-> Ecology

Problem 7:

$$L[0] = [0,6,\infty,\infty,\infty,11,\infty,\infty,\infty,\infty]$$

$$L[1] = [0,6,\infty,\infty,\infty,11,12,\infty,\infty,\infty]$$

$$L[2] = [0,6,\infty,\infty,22,11,12,\infty,\infty,\infty]$$

$$L[3] = [0,6,42,30,20,11,12,\infty,\infty,\infty]$$

$$L[4] = [0,6,42,30,20,11,12,34,\infty,\infty]$$

$$L[5] = [0,6,42,30,20,11,12,34,57,59]$$

Optimal paths are:

$$1-2$$
, length 6
 $1-2-7-3$, length 42
 $1-2-7-4$, length 30
 $1-2-7-5$, length 20
 $1-6$, length 11
 $1-2-7$, length 12
 $1-2-7-5-8$, length 34
 $1-2-7-5-8-9$, length 57
 $1-2-7-5-8-10$, length 59

Problem 8

(a) (i) Path:
$$3 \rightarrow 2 \rightarrow 3 \rightarrow 3$$

(ii) Cut: $S = \{s, 1, 2, 3, 4\}, \overline{S} = \{n\}$
(iii) $K(S,\overline{S}) = 10 + 20 + 5 = 35$

(ii) Cut :
$$S = \{s, 1, 2, 3, 4\}, S = \{n\}$$

(iii)
$$K(S,S) = 10 + 20 + 5 = 35$$

The following augmenting paths are:

$$\delta=8$$
 (8,20) (8,15) (20,20) $\delta=8$
 $f=22+8=30$

$$\delta=5$$
 (15,20) (5,5) $\delta=5$
 $f=30+5=35$

No more flow augmenting paths are possible. Max flow = 35. The flow distribution is given below:

(c)

A minimal cut:
$$S = \text{set of all labeled nodes}$$

$$= \{ s,2,3,4 \}$$

$$\overline{S} = \text{unlabeled nodes}$$

$$= \{ 1, n \}$$

$$K(S,\overline{S}) = 10 + 20 + 5 = 35 = \text{max flow.}$$

Problem 9

Replace the undirected arcs (1,2); (1,4) and (3,4) by a pair of directed arcs each.

Applying the max. flow algorithm, the flow augmenting paths are:

Max flow = 110. Since $f_{12} = 0$ and $f_{21} = 10$, flow in the undirected arc is from 2 to 1. Similarly one way signs be placed from 4 to 1 and 4 to 3.

Problem 10

Find the max flow from s to n in the above network. If max f = sum of all demands = 120, then it is possible to meet the demands with available supply. If max f < 120, then it is not possible. (Note: max f > 120 is not possible since there is a cut $S = \{s, W_1, W_2, W_3, M_1, M_2, M_3, M_4\}, \overline{S} = \{n\}$ whose capacity is 120.)

(b) Applying the max flow algorithm, the maximal flow is 110 < 120. Hence it is not possible to meet all the demands. There will be a shortage off 10 units at M_3 . The initial flow distribution is shown below:

Problem 11

	Week 1	Week 2	Week 3	Week 4	Dummy	-
Week 1	10	13	16	19	0	700
Week 2 (Normal)	14	10	13	16	[O	700
Week 2 (OT)	23	15	18	21	0	200
Week 3 (Normal)	27	19	15	18	ГО	700
Week 3 (OT)	36	28/	20	23	0	200
Week 4	35	27	19	15	0	700
	300	700	900	800	500	

 x_{1j} = Normal production in week 1 for use in week j for j = 1, 2, 3, 4 x_{2j} = Normal production in week 2 for use in week j for j = 1, 2, 3, 4 x_{3j} = Overtime production in week 2 for use in week j for j = 1, 2, 3, 4

 x_{3j} = Overtime production in week 2 for use in week j for j = 1, 2, 3, x_{4j} = Normal production in week 3 for use in week j for j = 1, 2, 3, 4

 x_{5j} = Overtime production in week 3 for use in week j for j = 1, 2, 3, 4

 x_{6j} = Normal production in week 4 for use in week j for j = 1, 2, 3, 4

NOTE: x_{21} , x_{31} , x_{41} , x_{51} , x_{61} , x_{42} , x_{52} , x_{62} , x_{63} , are productions to fill the backorders.

Transportation algorithm is initialized by Least Cost Rule as follows:

	ν ₁ =10	v ₂ =13	ν ₃ =16	v ₄ =19	ν ₅ =0	
u ₁ =0	300	13	200	100	100	700
u ₂ =-3	14	700	0 13	16	[0	700
u ₃ =0	23	15	18	21	200	200
u ₄ =-1	27	19	700 15	18	0	700
u ₅ =0	36	28	20	23	200	200
и ₆ =-1	35	27	19	700 15	0	700
	300	700	900	800	500	

The initial basic feasible solution by Least Cost Rule turns out to be optimal. Interpretation (Production schedule)

Produce 600 units on regular time on week 1 Produce 700 units on regular time on week 2 Produce 700 units on regular time on week 3 Produce 700 units on regular time on week 4

No overtime production on any week.