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1. [6 points] Suppose X and Y have the joint pdf:

fX,Y (u, v) =

{
C u2 + v2 ≤ 1
0 else,

(a) Find C.

Solution: Since the pdf is uniform and the support has area π, C = 1
π .

(b) Are X and Y independent? Explain why.

Solution: No, they are not since the support is not a product set.

2. [10 points] Suppose that buses are scheduled to arrive at a bus stop at noon but are always
X minutes late, where X is an exponential random variable with rate λ = 1/5. Suppose that
you arrive at the bus stop precisely at noon. NOTE: All answers can be left expressed in
terms of exponentials, e.g., ae−b.

(a) Compute the probability that you have to wait for more than 10 minutes for the bus to
arrive.

Solution: We use the complimentary CDF for exponential distribution,

P (X ≥ 10) = e−10λ = e−2. (1)

(b) Suppose that you have already waited for 10 minutes. Compute the probability that
you have to wait an additional 2 minutes or more.

Solution: We want P (X ≥ 12|X ≥ 10). Use the memoryless property of the exponential
distribution,

P (X ≥ 12|X ≥ 10) = P (X ≥ 2) = e−2λ = e−
2
5 . (2)

3. [16 points] The number of failures occurring in a particular wireless network over the time
interval [0, t) can be modeled as a Poisson process {N(t), t ≥ 0}. On average, there is a failure
every 4 days, i.e., the intensity of the process is λ = 0.25/day. NOTE: All answers can be
left expressed in terms of sums of exponentials, e.g., ae−b + ce−d.

(a) What is the probability of at most 1 failure in [0, 8) and at least 2 failures in [8, 16)?
The given time intervals are in days.

Solution: The probability is

p = P (N(8)−N(0) ≤ 1, N(16)−N(8) ≥ 2) .

By the independence of increments of a Poisson process, we have:

p = P (N(8)−N(0) ≤ 1)P (N(16)−N(8) ≥ 2)

= P (N(8) ≤ 1)P (N(8) ≥ 2).



P (N(8) ≤ 1) = P (N(8) = 0) + P (N(8) = 1) = e−0.25·8 + 0.25 · 8 · e−0.25·8 = 3e−2.

P (N(8) ≥ 2) = 1− P (N(8) ≤ 1) = 1− 3e−2.

Putting all the above results together:

p = 3e−2(1− 3e−2) = 3e−2 − 9e−4.

(b) Let T3 be the time of the third failure. Compute P (T3 > 8) (time unit: days).
Solution:

P (T3 > 8) = P (N(8) ≤ 2) = e−0.25·8

(
2∑

n=0

(0.25 · 8)n

n!

)
= 5e−2.

4. [16 points] Suppose the output transmission power of a cellular phone is X dBm (decibel-

milliwatts), where X is uniformly distributed over the interval [20, 30]. Then Y = 10X/10 is
the transmission power in mW (milliwatts). Find the pdf of Y .
NOTE: The answer can be left expressed in terms of logarithms like log10 e or ln 10.

Solution: The support of Y is [1020/10, 1030/10] or [100, 1000]. Then

FY (c) = P{10X/10 ≤ c}
= P{X ≤ 10 log10 c}

=


0 if c < 100
10 log10 c−20

30−20 if 100 ≤ c ≤ 1000

1 if c > 1000

=


0 if c < 100

log10 c− 2 if 100 ≤ c ≤ 1000

1 if c > 1000

.

The pdf of Y is

fY (c) = F ′Y (c) =

{
log10 e
c if 100 ≤ c ≤ 1000

0 else
.

5. [22 points] The pdf of the Kumaraswamy distribution is

pW (w) = abwa−1(1− wa)b−1, where w ∈ [0, 1],

where a and b are non-negative shape parameters. We observe a signal in the presence of
additive Kumaraswamy noise with a = 2 and b = 2, i.e., Y = X + W , where Y is the
observation, X is the original signal and W is the noise. Note that W is supported on the
interval [0, 1] and is not symmetric around 1/2.

(a) Suppose we have two possible signals X ∈ {0, 2}, where P (X = 0) = 0.3 and P (X =
2) = 0.7. Design a decision rule that minimizes the probability of error.
Solution: We notice that the conditional probability distributions for the two signals
do not overlap, as one has support on the interval [0, 1] and the other on the interval
[2, 3]. Thus any threshold-based test with a threshold in the non-overlapping region
would minimize error probability. As a particular example, letting the channel output
be y and the decision x̂, an optimal rule is:

y
x̂=0

Q
x̂=2

1.5.
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(b) Evaluate the probability of error, which we denote by P
(b)
e .

Solution: P
(b)
e = 0, clearly there is no error, since there is no confusion.

(c) Suppose we instead have two possible signals X ∈ {0, 1
2}, where P (X = 0) = 0.5 and

P (X = 1
2) = 0.5. Design a decision rule that minimizes the probability of error.

Solution: Under one hypothesis, we have a conditional output distribution of 4y(1−y2)
and in the other, we have a conditional output distribution of 4(y− 1

2)(1−(y− 1
2)2). Since

the two messages are equiprobable, we just need to compare the likelihoods. Moreover,
we can sketch and observe we just need to find the crossing point to get a threshold test.
Let us equate to find the threshold.

4y(1− y2) = 4(y − 1
2)(1− (y − 1

2)2)

y(1− y2) = (y − 1
2)(1− (y2 − y + 1

4))

y − y3 = (y − 1
2)(−y2 + y + 3

4)

y − y3 = −y3 + y2 + 3
4y + 1

2y
2 − 1

2y −
3
8

y = 3
2y

2 + 1
4y −

3
8

0 = 3
2y

2 − 3
4y −

3
8

0 = 3y2 − 3
2y −

3
4

0 = y2 − 1
2y −

1
4 .

Now using the quadratic formula, we get the following roots of the equation.

1
2 ±

√
1
4 − 4 · −1

4

2
=

1

2

(
1

2
±
√

5

2

)

Since the noise and signaling are positive-valued, we care about the positive root for our
threshold. This is

1

2

(
1

2
+

√
5

2

)
=

1 +
√

5

4
.

Thus our decision rule is

y
x̂=0

Q
x̂=1/2

1 +
√

5

4
.

(d) Let us call the average probability of error in this case to be P
(d)
e . Is P

(d)
e ≥ P

(b)
e , YES

or NO? (Note: You do NOT need to compute P
(d)
e .)

Solution: YES, clearly there will be some positive error probability, since there is over-
lap. This is more than zero.

6. [16 points] We have a coin with an unknown probability of showing head. We denote this
unknown probability by X and we know that the pdf of X is given by

fX(p) =
pα−1(1− p)β−1

B(α, β)
,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) , and Γ(n) = (n − 1)! if n is a positive integer. We toss the coin 5

times. Let α = 2 and β = 2. What is the probability that we observe 4 heads?
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Solution: Let Y be the number of heads we obtain. pY |X(v|p) ∼ Binomial(5,p).

P (Y = 4) =

∫ 1

0
fX(p)pY |X(v|p)dp

=

∫ 1

0

p(1− p)
B(2, 2)

(
5

4

)
p4(1− p)dp

= 30

∫ 1

0
p5(1− p)2dp

= 30B(6, 3) = 30
Γ(6)Γ(3)

Γ(9)
= 30

5!2!

8!
=

5

28
.

Note B(2, 2) = Γ(2)Γ(2)
Γ(4) = 1

3! and
∫ 1

0
p4(1−p)2
B(5,3) dp = 1.

7. [14 points] You have two machines. Machine 1 has lifetime T1, which is Exponential(λ1), and
Machine 2 has lifetime T2, which is Exponential(λ2). The lifetimes are independent random
variables. Machine 1 starts at time 0 and Machine 2 starts at time T . Assume that T is
deterministic. Compute the probability that Machine 1 is the first to fail.

Solution: We note that

P (T1 < T2 + T ) = P (T1 < T ) + P (T1 ≥ T, T1 < T2 + T )

= P (T1 < T ) + P (T1 < T2 + T |T1 ≥ T )P (T1 ≥ T )

= 1− e−λ1T + P (T1 < T2)e−λ1T

= 1− e−λ1T +
λ1

λ1 + λ2
e−λ1T .

Here, the memoryless property of the exponential distribution has been used. Also, for
P (T1 < T2) the following computation has been employed:

P (T1 < T2) =

∫ +∞

0

∫ v

0
λ1e
−λ1uλ2e

−λ2vdudv =

∫ ∞
0

λ2e
−λ2vFT1(v)dv

=

∫ ∞
0

λ2e
−λ2v

(
1− e−λ1v

)
dv = 1−

∫ ∞
0

λ2e
−(λ1+λ2)vdv

= 1− λ2

λ1 + λ2
=

λ1

λ1 + λ2
.
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