ECE 313: Hour Exam II

Wednesday, November 13, 2019
8:45 p.m. - 10:00 p.m.

1. $[20(7+7+6)$ points] Consider a continuous random variable X with the following pdf:

$$
f_{X}(u)=\left\{\begin{array}{cc}
K\left(1-u^{2}\right), & -a \leq u \leq a \\
0, & \text { otherwise }
\end{array}\right.
$$

for some constants $K>0$ and $a>0$.
(a) What must K and a satisfy for f_{X} to be a valid pdf? Can a be greater than one?

Solution: For f_{X} to be a valid pdf, we must have:

$$
\begin{aligned}
1 & =\int_{-a}^{a} K\left(1-u^{2}\right) d u \\
& =\left.K\left(u-\frac{u^{3}}{3}\right)\right|_{-a} ^{a} \\
& =K\left(a-\frac{a^{3}}{3}+a-\frac{a^{3}}{3}\right) \\
& =K\left(2 a-\frac{2 a^{3}}{3}\right)
\end{aligned}
$$

Therefore, for $a=1, K=3 / 4$.
Finally, a can not be greater than 1, since the pdf would be negative in that case.
(b) Compute the CDF of X, i.e., F_{X}. Leave your answer in terms of K and a.

Solution: Note that $F_{X}(c)=0$ for $c<-a, F_{X}(c)=1$ for $c>a$, and for $-a \leq c \leq a$:

$$
\begin{aligned}
F_{X}(c) & =\int_{-a}^{c} K\left(1-u^{2}\right) d u \\
& =\left.K\left(u-\frac{u^{3}}{3}\right)\right|_{-a} ^{c} \\
& =K\left(c-\frac{c^{3}}{3}+a-\frac{a^{3}}{3}\right)
\end{aligned}
$$

(c) For $a=1$, compute $P\left(X^{2}+2 X>0\right)$ and $E[X]$.

Solution:

$$
\begin{aligned}
P\left(X^{2}+2 X>0\right) & =P(X(X+2)>0) \\
& =\int_{0}^{1} K\left(1-u^{2}\right) d u \\
& =\left.K\left(u-\frac{u^{3}}{3}\right)\right|_{0} ^{1} \\
& =K \frac{2}{3}=1
\end{aligned}
$$

One can also realize that in this case, $\int_{0}^{1} K\left(1-u^{2}\right) d u=1 / 2$, since the pdf is symmetric and we are integrating over the right half.
$E[X]=0$, since the pdf is symmetric around the origin.
2. [20 $(7+13)$ points] Corey is doing research on traffic flow in which he assumes that cars pass by the Grainger library crossing on Springfield Ave during the lunch hours according to a Poisson process with rate λ cars per minute. Based on that assumption, solve the following.
(a) Find the probability that there are 2 passing cars between 12:00pm and 12:02pm.

Solution: Let N be the number of passing cars between 12:00pm and 12:02pm. Then according to Poisson process assumption, $N \sim$ Poisson(2 2). Thus

$$
P(N=2)=\frac{e^{-2 \lambda}(2 \lambda)^{2}}{2!}
$$

(b) Find the probability that there are 3 passing cars between 12:01pm and 12:03pm given that there are 2 passing cars between $12: 00 \mathrm{pm}$ and $12: 02 \mathrm{pm}$.
Solution: Let A be the event that there are 2 passing cars between 12:00pm and $12: 02 \mathrm{pm}$, and B be the event that there are 3 passing cars between 12:01pm and 12:03pm. Note that these two intervals are not disjoint, so we need to break these them into disjoint intervals to get independent Poisson random variables. Let $E_{i, j, k}$ be the event that there are:
i. i passing cars from $12: 00 \mathrm{pm}$ to $12: 01 \mathrm{pm}$,
ii. j passing cars from $12: 01 \mathrm{pm}$ to $12: 02 \mathrm{pm}$,
iii. k passing cars from $12: 02 \mathrm{pm}$ to $12: 03 \mathrm{pm}$.

Then $P(A B)$ is the sum of probabilities of the following of disjoint events as

$$
P(A B)=P\left(E_{2,0,3}\right)+P\left(E_{1,1,2}\right)+P\left(E_{0,2,1}\right)
$$

Using the Poisson process assumption, we have

$$
P\left(E_{i, j, k}\right)=\frac{e^{-\lambda} \lambda^{i}}{i!} \frac{e^{-\lambda} \lambda^{j}}{j!} \frac{e^{-\lambda} \lambda^{k}}{k!}=\frac{e^{-3 \lambda} \lambda^{i+j+k}}{i!j!k!} .
$$

Hence,

$$
P(A B)=e^{-3 \lambda}\left(\frac{\lambda^{5}}{2!0!3!}+\frac{\lambda^{4}}{1!1!2!}+\frac{\lambda^{3}}{0!2!1!}\right) .
$$

Finally, the asked conditional probability is

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A B)}{P(A)} \\
& =e^{-3 \lambda}\left(\frac{\lambda^{5}}{2!0!3!}+\frac{\lambda^{4}}{1!1!2!}+\frac{\lambda^{3}}{0!2!1!}\right) \frac{2!}{e^{-2 \lambda}(2 \lambda)^{2}} \\
& =e^{-\lambda}\left(\frac{\lambda^{3}}{24}+\frac{\lambda^{2}}{4}+\frac{\lambda}{4}\right) .
\end{aligned}
$$

3. [10 points] Let $X \sim N(3,16)$. Clearly describe how can we use the Q table to find u such that $P(X>u)=0.05$.
Solution: We have

$$
P(X>u)=P\left(\frac{X-3}{4}>\frac{u-3}{4}\right)=P\left(Z>\frac{u-3}{4}\right)=Q\left(\frac{u-3}{4}\right) .
$$

Hence using the Q table we can find

$$
\frac{u-3}{4}=Q^{-1}(0.05) \Longrightarrow u=4 \cdot Q^{-1}(0.05)+3 .
$$

4. [10 points] Assume that if hypothesis $0\left(H_{0}\right)$ is true, then the random variable X has the pdf f_{0}, and if hypothesis $1\left(H_{1}\right)$ is true, then the random variable X has the pdf f_{1}, whose graphs are given in the following figure. Find the ML decision rule for the hypothesis test, and the corresponding $p_{\text {false alarm }}$.

Solution: Intersection of graphs of f_{0} and f_{1} is $x=3 / 2$ (see the picture below).

Therefore, if we observe $X=x$, then the ML rule is

$$
\begin{cases}f_{1}(x) \geq f_{0}(x) & \text { if } x \geq 3 / 2 \\ f_{1}(x)<f_{0}(x) & \text { if } x<3 / 2\end{cases}
$$

Therefore, the ML decision rule is

$$
\begin{cases}\text { Declare } H_{1} & \text { if } x \geq 3 / 2 \\ \text { Declare } H_{0} & \text { if } x<3 / 2\end{cases}
$$

We have $p_{\text {false alarm }}=\mathbb{P}\left[\right.$ Declar H_{1} true $\left.\mid H_{0}\right]=\int_{3 / 2}^{\infty} f_{0}(x) d x=\frac{1}{8}$.
5. [20 points] Prof. Hajek is driving from Champaign to Chicago at a constant speed X miles per hour, which is a random variable uniformly distributed in the interval [70, 80]. The distance between Champaign and Chicago is 140 miles. Let random variable Y be the time duration (in hours) of the trip, i.e., $Y=g(X)=\frac{140}{X}$. Find the pdf of Y.
Solution: We first find the CDF, and then we derivate it to find the pdf. First note that since $X \in[70,80], Y \in[14 / 8,2]$. Therefore, $F_{Y}(y)=0$ for $y<14 / 8$, and $F_{Y}(y)=1$ for $y>2$. For $14 / 8 \leq y \leq 2$, we have

$$
F_{Y}(y)=\mathbb{P}[Y \leq y]=\mathbb{P}[140 / y \leq X]=\left(80-\frac{140}{y}\right) \frac{1}{10}=8-\frac{14}{y},
$$

where we have used the fact that $X \sim U[70,80]$.
Finally, taking the derivative, we get $f_{Y}(y)=\frac{14}{y^{2}}$, for $y \in[14 / 8,2]$, and 0 otherwise.
6. $[\mathbf{2 0}(\mathbf{1 0}+\mathbf{1 0})$ points] Consider the joint density function:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
6 e^{-(2 x+3 y)}, & 0<x<\infty, 0<y<\infty \\
0, & \text { otherwise }
\end{array} .\right.
$$

(a) Compute $P(X<Y)$.

Solution:

$$
\begin{aligned}
P(X<Y) & =\iint_{(x, y): x<y} f_{X Y}(x, y) d x d y=\int_{0}^{\infty} \int_{0}^{y} f_{X Y}(x, y) d x d y=\int_{0}^{\infty} \int_{0}^{y} 6 e^{-(2 x+3 y)} d x d y \\
& \int_{0}^{\infty} 3 e^{-3 y} \int_{0}^{y} 2 e^{-2 x} d x d y=\int_{0}^{\infty} 3 e^{-3 y}\left[1-e^{-2 y}\right] d y=\int_{0}^{\infty} 3 e^{-3 y} d y-\int_{0}^{\infty} 3 e^{-5 y} d y \\
& =1-3\left[-\frac{e^{-5 y}}{5}\right]_{0}^{\infty}=1-\frac{3}{5}=\frac{2}{5}
\end{aligned}
$$

Here, we have used the observation that $2 e^{-2 x}$ is the pdf of an $\operatorname{Exp}(2)$ random variable X. Denote by $F_{X}(x)$ the corresponding CDF. Then, $\int_{0}^{y} 2 e^{-2 x} d x=F_{X}(y)=1-e^{-2 y}$. Similarly, $3 e^{-3 y}$ is the pdf of an $\operatorname{Exp}(3)$ random variable Y and therefore, $\int_{0}^{\infty} 3 e^{-3 y} d y=$ 1.
(b) Are X, Y independent?

Solution: Clearly, $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$ for $0<x<\infty, 0<y<\infty$, where $f_{X}(x)=$ $2 e^{-2 x}, x>0$ and $f_{Y}(y)=3 e^{-3 y}, y>0$. Therefore, X, Y are independent.

