ECE 313: Hour Exam I

Wednesday, October 9, 2019 8:45 p.m. — 10:00 p.m.

- 1. [20 points] The two parts of this problem are unrelated.
 - (a) Consider a box containing 3 Blue balls, 2 Yellow balls, 3 Red balls, and 1 Green ball. You take 3 balls at random. What is the probability that you get at least one yellow and one green balls?

Solution: I could get one yellow, one green, and one of another color, or two yellow and one green (since there is only one green ball). And there are 2 yellow balls in total. Therefore, the number of options is $\binom{2}{1} \times \binom{1}{1} \times \binom{6}{1} + \binom{2}{2} \times \binom{1}{1}$. The total number of outcomes is $\binom{9}{3}$, and hence the sought probability is given by:

$$\frac{\binom{2}{1} \times \binom{1}{1} \times \binom{6}{1} + \binom{2}{2} \times \binom{1}{1}}{\binom{9}{3}}$$

(b) Consider two events A and B with positive probability. If A ⊂ B, what is P(B|A)? What does P(B) need to satisfy for A and B to be independent?
Solution: Since A ⊂ B, P(AB) = P(A), and hence P(B|A) = 1, and so for events A and B to be independent, we need P(B) = 1.

- 2. [20 points] You enter a chess tournament where your probability of winning a game is 0.3 against half the players (call them type 1), 0.4 against a quarter of the players (call them type 2), and 0.5 against the remaining quarter of the players (call them type 3).
 - (a) You play a game against a randomly chosen opponent. What is the probability of winning?

Solution: Let A_i be the event of playing with an opponent of type $i \in \{1, 2, 3\}$. We have

$$\mathbb{P}[A_1] = 0.5, \quad \mathbb{P}[A_2] = 0.25, \quad \mathbb{P}[A_3] = 0.25.$$

Also, let WIN be the event of winning. We have

 $\mathbb{P}[\text{WIN}|A_1] = 0.3, \quad \mathbb{P}[\text{WIN}|A_2] = 0.4, \quad \mathbb{P}[\text{WIN}|A_3] = 0.5.$

Thus, by the total probability theorem, the probability of winning is

$$\mathbb{P}[\text{WIN}] = \mathbb{P}[A_1] \mathbb{P}[\text{WIN}|A_1] + \mathbb{P}[A_2] \mathbb{P}[\text{WIN}|A_2] + \mathbb{P}[A_3] \mathbb{P}[\text{WIN}|A_3]$$

= 0.5 × 0.3 + 0.25 × 0.4 + 0.25 × 0.5
= 0.375.

The answer is 0.375.

(b) You play a game against a randomly chosen opponent. If you win, what is the probability of having played against an opponent of type 1?Solution: By the Bayes formula, we have

$$\mathbb{P}[A_1|\text{WIN}] = \frac{\mathbb{P}[A_1]\mathbb{P}[\text{WIN}|A_1]}{\mathbb{P}[\text{WIN}]} = \frac{0.5 \times 0.3}{0.375} = \frac{2}{5}.$$

The answer is 2/5.

- 3. [20 points] The two parts of this problem are unrelated.
 - (a) Suppose a fair die is repeatedly rolled, and let L be the number of trials conducted until the number six shows. Using the Chebychev inequality, compute the minimum integer, n, such that $\mathbb{P}[|L \mathbb{E}[L]| \ge n] \le 0.3$

Solution: The random variable L has the geometric distribution with parameter p = 1/6. Its mean and variance are

$$\mathbb{E}[L] = \frac{1}{p}, \quad \operatorname{Var}(L) = \frac{1-p}{p^2}.$$

By applying the Chebychev inequality, we have

$$\mathbb{P}[|L - \mathbb{E}[L]| \ge n] \le \frac{1}{n^2} \frac{1 - p}{p^2} = \frac{1}{n^2} 30.$$

Therefore, to satisfy $\mathbb{P}[|L - \mathbb{E}[L]| \ge n] \le 0.3$, n needs to be larger than or equal to 10. The answer is 10.

(b) Consider two identical dice, containing only numbers 1, 2, and 3. Let X_1, X_2 be the outcomes of rolling these dice together. Assume that the probabilities of each outcome for both X_1 and X_2 are: $p_{X_1}(1) = p_{X_2}(1) = \frac{1}{8}, p_{X_1}(2) = p_{X_2}(2) = \frac{3}{8}, p_{X_1}(3) = p_{X_2}(3) = \frac{1}{2}$. How many rolls on average are required such that $\max\{X_1, X_2\} = 2$?

Solution: The event $\{\max\{X_1, X_2\} = 2\}$ occurs when $(X_1, X_2) \in \{(1, 2), (2, 1), (2, 2)\}$. Therefore, $P(\max\{X_1, X_2\} = 2) = 2 \cdot \frac{1}{8} \cdot \frac{3}{8} + \frac{3}{8} \cdot \frac{3}{8} = \frac{15}{64}$. The number of rolls Y to obtain $\max\{X_1, X_2\} = 2$ is a geometric random variable with parameter $p = P(\max\{X_1, X_2\} = 2) = \frac{15}{64}$. Therefore, since $E[Y] = \frac{1}{p} = \frac{64}{15}$, $\lceil 64/15 \rceil = 5$ rolls are required on average to obtain $\max\{X_1, X_2\} = 2$.

- 4. [20 points] A robot starts at the origin and moves along the x-axis, one step at a time. At each step it moves forward 1 foot with probability 3/4 and backward 1 foot with probability 1/4, independently of all other steps. Let the random variable X denote the position (in feet) of the robot on the x-axis after 5 steps.
 - (a) What are the possible values of X? **Solution:** Let Y be the numbers of forward steps among the 5 steps. We have $Y \sim \text{Binom}(n = 5, p = 3/4)$, and X = Y - (5 - Y) = 2Y - 5. Hence $X \in \{-5, -3, -1, 1, 3, 5\}$.
 - (b) What is the pmf of the random variable X? **Solution:** From the pmf of binomial distribution, $P\{X = 2k - 5\} = P\{Y = k\} = {5 \choose k} (3/4)^k (1/4)^{5-k}$, for k = 0, 1, 2, 3, 4, 5.
 - (c) What is the expected value of X? Solution: $E[X] = E[2Y - 5] = 2 \cdot E[Y] - 5 = 2 \cdot 5 \cdot (3/4) - 5 = 10/4.$

5. [20 points] Consider a binary hypothesis testing problem with the following likelihood matrix (e.g., under H_1 , the probability of X = 1 is 1/8):

$$\begin{array}{c|ccccc} X & 1 & 2 & 3 \\ \hline H_1 & \frac{1}{8} & \frac{3}{8} & \frac{1}{2} \\ H_0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{array}$$

(a) Specify the ML decision rule given the observation X by breaking ties in favor of H_1 . What is $p_{\text{false alarm}}$? Solution:

- (b) How many decision rules are there? **Solution:** $2^3 = 8$ decision rules.
- (c) Suppose that instead of an observation of X we are given the sum of two independent realizations of X (under the same hypothesis). If the sum of these two realizations is 2, which hypothesis will the ML decision rule declare as the true hypothesis?

Solution: Sum of two independent realizations of X equal to 2 can only happen if the realized values are (1, 1). This pair has probability $\frac{1}{8^2}$ under H_1 and probability $\frac{1}{4^2}$ under H_0 . Thus, the ML decision rule will declare H_0 as the true hypothesis.