ECE 313: Hour Exam I

Wednesday, October 9, 2019
8:45 p.m. - 10:00 p.m.

1. [20 points] The two parts of this problem are unrelated.
(a) Consider a box containing 3 Blue balls, 2 Yellow balls, 3 Red balls, and 1 Green ball. You take 3 balls at random. What is the probability that you get at least one yellow and one green balls?
Solution: I could get one yellow, one green, and one of another color, or two yellow and one green (since there is only one green ball). And there are 2 yellow balls in total.Therefore, the number of options is $\binom{2}{1} \times\binom{ 1}{1} \times\binom{ 6}{1}+\binom{2}{2} \times\binom{ 1}{1}$. The total number of outcomes is $\binom{9}{3}$, and hence the sought probability is given by:

$$
\frac{\binom{2}{1} \times\binom{ 1}{1} \times\binom{ 6}{1}+\binom{2}{2} \times\binom{ 1}{1}}{\binom{9}{3}}
$$

(b) Consider two events A and B with positive probability. If $A \subset B$, what is $P(B \mid A)$? What does $P(B)$ need to satisfy for A and B to be independent?
Solution: Since $A \subset B, P(A B)=P(A)$, and hence $P(B \mid A)=1$, and so for events A and B to be independent, we need $P(B)=1$.
2. [20 points] You enter a chess tournament where your probability of winning a game is 0.3 against half the players (call them type 1), 0.4 against a quarter of the players (call them type 2), and 0.5 against the remaining quarter of the players (call them type 3).
(a) You play a game against a randomly chosen opponent. What is the probability of winning?
Solution: Let A_{i} be the event of playing with an opponent of type $i \in\{1,2,3\}$. We have

$$
\mathbb{P}\left[A_{1}\right]=0.5, \quad \mathbb{P}\left[A_{2}\right]=0.25, \quad \mathbb{P}\left[A_{3}\right]=0.25
$$

Also, let WIN be the event of winning. We have

$$
\mathbb{P}\left[\mathrm{WIN} \mid A_{1}\right]=0.3, \quad \mathbb{P}\left[\mathrm{WIN} \mid A_{2}\right]=0.4, \quad \mathbb{P}\left[\mathrm{WIN} \mid A_{3}\right]=0.5
$$

Thus, by the total probability theorem, the probability of winning is

$$
\begin{aligned}
\mathbb{P}[\mathrm{WIN}] & =\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{1}\right]+\mathbb{P}\left[A_{2}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{2}\right]+\mathbb{P}\left[A_{3}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{3}\right] \\
& =0.5 \times 0.3+0.25 \times 0.4+0.25 \times 0.5 \\
& =0.375
\end{aligned}
$$

The answer is 0.375 .
(b) You play a game against a randomly chosen opponent. If you win, what is the probability of having played against an opponent of type 1?
Solution: By the Bayes formula, we have

$$
\mathbb{P}\left[A_{1} \mid \mathrm{WIN}\right]=\frac{\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{1}\right]}{\mathbb{P}[\mathrm{WIN}]}=\frac{0.5 \times 0.3}{0.375}=\frac{2}{5}
$$

The answer is $2 / 5$.
3. [20 points] The two parts of this problem are unrelated.
(a) Suppose a fair die is repeatedly rolled, and let L be the number of trials conducted until the number six shows. Using the Chebychev inequality, compute the minimum integer, n, such that $\mathbb{P}[|L-\mathbb{E}[L]| \geq n] \leq 0.3$
Solution: The random variable L has the geometric distribution with parameter $p=$ $1 / 6$. Its mean and variance are

$$
\mathbb{E}[L]=\frac{1}{p}, \quad \operatorname{Var}(L)=\frac{1-p}{p^{2}} .
$$

By applying the Chebychev inequality, we have

$$
\mathbb{P}[|L-\mathbb{E}[L]| \geq n] \leq \frac{1}{n^{2}} \frac{1-p}{p^{2}}=\frac{1}{n^{2}} 30 .
$$

Therefore, to satisfy $\mathbb{P}[|L-\mathbb{E}[L]| \geq n] \leq 0.3, n$ needs to be larger than or equal to 10 . The answer is 10 .
(b) Consider two identical dice, containing only numbers 1,2 , and 3 . Let X_{1}, X_{2} be the outcomes of rolling these dice together. Assume that the probabilities of each outcome for both X_{1} and X_{2} are: $p_{X_{1}}(1)=p_{X_{2}}(1)=\frac{1}{8}, p_{X_{1}}(2)=p_{X_{2}}(2)=\frac{3}{8}, p_{X_{1}}(3)=p_{X_{2}}(3)=\frac{1}{2}$. How many rolls on average are required such that $\max \left\{X_{1}, X_{2}\right\}=2$?
Solution: The event $\left\{\max \left\{X_{1}, X_{2}\right\}=2\right\}$ occurs when $\left(X_{1}, X_{2}\right) \in\{(1,2),(2,1),(2,2)\}$. Therefore, $P\left(\max \left\{X_{1}, X_{2}\right\}=2\right)=2 \cdot \frac{1}{8} \cdot \frac{3}{8}+\frac{3}{8} \cdot \frac{3}{8}=\frac{15}{64}$. The number of rolls Y to obtain $\max \left\{X_{1}, X_{2}\right\}=2$ is a geometric random variable with parameter $p=P\left(\max \left\{X_{1}, X_{2}\right\}=\right.$ $2)=\frac{15}{64}$. Therefore, since $E[Y]=\frac{1}{p}=\frac{64}{15},\lceil 64 / 15\rceil=5$ rolls are required on average to obtain $\max \left\{X_{1}, X_{2}\right\}=2$.
4. [20 points] A robot starts at the origin and moves along the x-axis, one step at a time. At each step it moves forward 1 foot with probability $3 / 4$ and backward 1 foot with probability $1 / 4$, independently of all other steps. Let the random variable X denote the position (in feet) of the robot on the x-axis after 5 steps.
(a) What are the possible values of X ?

Solution: Let Y be the numbers of forward steps among the 5 steps. We have $Y \sim$ $\operatorname{Binom}(n=5, p=3 / 4)$, and $X=Y-(5-Y)=2 Y-5$. Hence $X \in\{-5,-3,-1,1,3,5\}$.
(b) What is the pmf of the random variable X ?

Solution: From the pmf of binomial distribution, $P\{X=2 k-5\}=P\{Y=k\}=$ $\binom{5}{k}(3 / 4)^{k}(1 / 4)^{5-k}$, for $k=0,1,2,3,4,5$.
(c) What is the expected value of X ?

Solution: $E[X]=E[2 Y-5]=2 \cdot E[Y]-5=2 \cdot 5 \cdot(3 / 4)-5=10 / 4$.
5. [20 points] Consider a binary hypothesis testing problem with the following likelihood matrix (e.g., under H_{1}, the probability of $X=1$ is $1 / 8$):

X	1	2	3
H_{1}	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{2}$
H_{0}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$

(a) Specify the ML decision rule given the observation X by breaking ties in favor of H_{1}. What is $p_{\text {false alarm }}$?
Solution:

$$
\begin{array}{c|ccc}
X & 1 & 2 & 3 \\
\hline H_{1} & \frac{1}{8} & \frac{3}{8} & \frac{1}{2} \\
H_{0} & \underline{1} & \frac{1}{4} & \frac{1}{2} \\
p_{\text {false alarm }} & =P\left(H_{1} \mid H_{0}\right)=\frac{3}{4} .
\end{array}
$$

(b) How many decision rules are there?

Solution: $2^{3}=8$ decision rules.
(c) Suppose that instead of an observation of X we are given the sum of two independent realizations of X (under the same hypothesis). If the sum of these two realizations is 2 , which hypothesis will the ML decision rule declare as the true hypothesis?
Solution: Sum of two independent realizations of X equal to 2 can only happen if the realized values are $(1,1)$. This pair has probability $\frac{1}{8^{2}}$ under H_{1} and probability $\frac{1}{4^{2}}$ under H_{0}. Thus, the ML decision rule will declare H_{0} as the true hypothesis.

