ECE 313: Final Exam

Monday, December 16, 2019
7:00 p.m. - 10:00 p.m.

1. $[\mathbf{5}+\mathbf{5}+\mathbf{5}$ points] Consider a game with probability of winning $p=1 / 3$. If we win, we receive $\$ 10$, otherwise we pay $\$ 2$. Assume that we play the game until we win for the first time.
(a) Find the probability that we earn $\$ 4$.

Solution: To earn $\$ 4$, we need to lose 3 times (we lose $\$ 2$ every time) and then to win one time (we win $\$ 10$). The probability of this event is $(2 / 3) \times(2 / 3) \times(2 / 3) \times(1 / 3)=8 / 81$.
(b) Find the mean value of our payoff (i.e., our expected earnings).

Solution: Let L denote the number of games played until we win the game for the first time. Then, $L \sim \operatorname{Geo}(1 / 3)$. Our payoff will be $-2(L-1)+10$. Taking the expectation and using the fact that $E[L]=1 / p=3$, our expected payoff is $-2(3-1)+10=6$.
(c) Now assume that instead of stopping at the first win, we keep playing the game an infinite number of times. Let L_{1} be the number of games needed until the first win. Let L_{2} denote the number of games, after the first L_{1} trials, until the second win. Find $\mathbb{P}\left(L_{2}=3 \mid L_{1}=5\right)$.
Solution: L_{1} is clearly independent of L_{2} (in a Bernoulli process, all geometric random variables are independent). Therefore, $\mathbb{P}\left(L_{2}=3 \mid L_{1}=5\right)=\mathbb{P}\left(L_{2}=3\right)=(2 / 3) \times(2 / 3) \times$ $(1 / 3)=4 / 27$.
2. $[\mathbf{6}+\mathbf{6}+\mathbf{6}+\mathbf{3}$ points] Consider the experiment of rolling two fair dice, each with 6 faces numbered $1,2,3,4,5,6$. Let S and P denote the sum and product of the numbers showing on the two dice, respectively.
(a) Find the mean of P.

Solution: Let X_{1} and X_{2} denote the numbers showing on the two dice. We have

$$
P\left\{X_{i}=k\right\}=\frac{1}{6}, \quad \text { for } i=1,2 ; k=1,2, \ldots, 6 .
$$

Furthermore, X_{1} and X_{2} are independent. The mean of P can be calculated as

$$
E[P]=E\left[X_{1} X_{2}\right]=E\left[X_{1}\right] E\left[X_{2}\right],
$$

while for $i=1,2$ we have

$$
E\left[X_{i}\right]=\sum_{k=1}^{6} \frac{1}{6} k=\frac{7}{2} .
$$

Hence,

$$
E[P]=\left(\frac{7}{2}\right)^{2}=\frac{49}{4}
$$

(b) Find the probability that S is even.

Solution: Define the following events: $E_{i}=$ " X_{i} is even", $O_{i}=$ " X_{i} is odd" for $i=$ 1, 2. Clearly, $P\left(E_{i}\right)=P\left(O_{i}\right)=1 / 2, i=1,2$. We have $P($ " S is even" $)=P\left(E_{1} E_{2}\right)+$ $P\left(O_{1} O_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)+P\left(O_{1}\right) P\left(O_{2}\right)$, since X_{1} and X_{2} are independent. Thus,

$$
P(" S \text { is even" })=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2} .
$$

(c) Find the probability that S is even given that P is even.

Solution: We have

$$
P(\text { " } S \text { is even" } \mid " P \text { is even" })=\frac{P(\text { " } S \text { is even", " } P \text { is even" })}{P(" P \text { is even" })}=\frac{P\left(E_{1} E_{2}\right)}{1-P\left(O_{1} O_{2}\right)}=\frac{1}{3} .
$$

(d) Are " S is even" and " P is even" mutually independent? Justify your answer.

Solution: Since $P($ " S is even" $) \neq P($ " S is even"|" P is even" $)$, S is even" and " P is even" are not mutually independent.
3. $[6+6+6$ points $]$ When looking for the next smartphone to buy, you narrow down to two leading brands. The first brand claims that their phone lifetime is uniformly distributed over the interval 0 to 4 years, while the second brand claims that their phone lifetime in years is exponentially distributed with parameter $\lambda=1 / 2$.
(a) If you use the expectation of lifetime (the larger the better), then which brand should you pick? Justify your answer.
Solution: Let X be the lifetime of a phone from the first brand and Y be the lifetime of a phone from the second brand. We have $X \sim \operatorname{Unif}[0,4]$ and $Y \sim \operatorname{Exp}(\lambda)$, where $\lambda=1 / 2$. Therefore, $E[X]=(0+4) / 2=2$ and $E[Y]=1 / \lambda=2$. Hence, both brands are equally good in terms of expectation of lifetime.
(b) If you will replace your phone after 2 years anyway, then a better metric would be the probability that the phone is still working after 2 years. Which brand should you pick now? Justify your answer.
Solution: Using the pdf and properties of uniform and exponential random variables we have

$$
\begin{aligned}
& P(X>2)=\int_{2}^{4} \frac{1}{4} d u=\frac{1}{2} \\
& P(Y>2)=e^{-\lambda 2}=e^{-1}=\frac{1}{e} .
\end{aligned}
$$

Hence, $P(X>2)>P(Y>2)$, i.e., you should pick the first brand.
(c) If your mother only wants to replace her phone after 5 years, then which brand would you pick for her? Justify your answer.
Solution: Only phones from the second brand have positive probability of working after five years. Hence, you should choose the second brand for your mother.
4. $[4+6+4$ points $]$ Buses arrive at a bus stop according to a Poisson process with arrival rate $\lambda=4$ per hour. Let N_{t} denote the number of buses arriving in the time interval $[0, t]$. Recall that for a fixed $t>0, N_{t}$ is a Poisson random variable with parameter $4 t$.
(a) Find the probability that no bus arrives in the first $t=0.25$ hours. Provide your answer in terms of e.
Solution: The probability is given by $\mathbb{P}\left[N_{0.25}=0\right]=\frac{e^{-\lambda t}(\lambda t)^{0}}{0!}=\frac{e^{-4 \times 0.25}(4 \times 0.25)^{0}}{0!}=e^{-1}$.
(b) Find the conditional probability that there is 1 arrival in the interval $(0.5 h, 1 h]$ given that there are 2 arrivals in the interval $[0,1 h]$. Here, ' h ' denotes 'hours'.
Solution: Suppressing ' h ' for notational convenience, let A be the event that there is 1 arrival in the time interval $(0.5,1], B$ the event that there are 2 arrivals in the interval $[0,1]$ and C the event that there is 1 arrival in the interval $[0,0.5]$. Then, the conditional
probability is given by

$$
\begin{aligned}
& \mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}=\frac{\mathbb{P}[A \cap C]}{\mathbb{P}[B]} \underbrace{=}_{\text {ind. incr. property }} \frac{\mathbb{P}[A] \mathbb{P}[C]}{\mathbb{P}[B]}=\frac{\mathbb{P}\left[N_{0.5}=1\right] \mathbb{P}\left[N_{0.5}=1\right]}{\mathbb{P}\left[N_{1}=2\right]} \\
& =\frac{\frac{e^{-4 \times 0.5}(4 \times 0.5)^{1}}{1!} \frac{e^{-4 \times 0.5}(4 \times 0.5)^{1}}{1!}}{\frac{e^{-4 \times 1}(4 \times 1)^{2}}{2!}}=\frac{\frac{e^{-2} 2^{1}}{1!} \frac{e^{-2} 2^{1}}{1!}}{\frac{e^{-4} 4^{2}}{2!}}=\frac{4 e^{-2} e^{-2}}{e^{-4} 8}=\frac{1}{2} .
\end{aligned}
$$

(c) Let X denote the number of arrivals in $[0,1 h]$ and let Y denote the number of arrivals in $(1 h, 2 h]$. Find $\mathbb{P}(Y=2 \mid X=1)$.
Solution: Since X and Y are independent and X and Y have identical distributions, $\mathbb{P}[Y=2 \mid X=1]=\mathbb{P}[Y=2]=\mathbb{P}\left[N_{1}=2\right]=\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}=\frac{e^{-4}(4)^{2}}{2!}=8 e^{-4}$.
5. $[4+4+6$ points] Consider the following $s-t$ network, where link i fails independently with probability p_{i} :

Denote by $q_{i}=1-p_{i}$ the probability that link i works.
(a) Let Y denote the capacity of the network, i.e., the maximum flow rate from s to t. What are the possible values of Y ?
Solution: Y takes values in the set $\{0,5,10\}$.
(b) Compute $P(Y=5)$.

Solution: $Y=5$ if all links work except for link 4 . Therefore, $P(Y=5)=q_{1} q_{2} q_{3} p_{4} q_{5}$.
(c) Compute the probability of network outage, which corresponds to the event that at least one link fails along every $s-t$ path.
Solution: The network fails if either link 1 or 5 fail, which happens with probability $p_{1}+p_{5}-p_{1} p_{5}$.
If links 1 and 5 work, then the network fails if both link 4 and the serial link $2-3$ fails, which has probability $q_{1} q_{5} p_{4} p_{2,3}$. Here, $p_{2,3}$ denotes the probability that the serial link $2-3$ fails, which is given by $p_{2,3}=p_{2}+p_{3}-p_{2} p_{3}$.
Therefore, we have

$$
P(\text { outage })=P(Y=0)=p_{1}+p_{5}-p_{1} p_{5}+q_{1} q_{5} p_{4}\left(p_{2}+p_{3}-p_{2} p_{3}\right)
$$

6. $[\mathbf{1 2}+\mathbf{1 2}$ points $]$ The two parts of this problem are unrelated.
(a) A blind man waits at a bus stop serviced by the buses A and B. He plans to take the next bus arriving at the bus stop. Let X denote the arrival time of bus A and Y denote the arrival time of bus B. X is an exponential random variable with mean value 1 and Y is also exponential with mean value 10. Additionally, X and Y are independent. The blind man wants to take bus A. What is the probability that he takes the wrong bus?
Solution: He takes the wrong bus when Y is less than $X . X$ and Y are independent so the joint distribution is the product of the marginals.

$$
\begin{aligned}
P(Y<X) & =\int_{0}^{\infty} \int_{v}^{\infty} f_{X, Y}(u, v) d u d v \\
& =\int_{0}^{\infty} \int_{v}^{\infty} e^{-u}\left(0.1 e^{-0.1 v}\right) d u d v \\
& =\int_{0}^{\infty} e^{-v}\left(0.1 e^{-0.1 v}\right) d v \\
& =\int_{0}^{\infty} 0.1 e^{-1.1 v} d v \\
& =1 / 11
\end{aligned}
$$

(b) Let X and Y be random variables with joint pdf

$$
f_{X, Y}(u, v)=\left\{\begin{array}{cc}
8 u v, & 0 \leq u \leq v, 0 \leq v \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find $f_{X \mid Y}(u \mid v)$ for any $0 \leq u \leq v \leq 1$ and $E[X \mid Y=v]$ for any $0 \leq v \leq 1$.
Solution: We first note that $f_{X \mid Y}(u \mid v)=\frac{f_{X, Y}(u, v)}{f_{Y}(v)}$.

$$
\begin{gathered}
f_{Y}(v)=\int_{0}^{v} 8 u v d u=\left.4 v u^{2}\right|_{0} ^{v}=4 v^{3}, \quad 0 \leq v \leq 1 \\
f_{X \mid Y}(u \mid v)=\frac{8 u v}{4 v^{3}}=\frac{2 u}{v^{2}}, \quad 0 \leq u \leq v \leq 1 .
\end{gathered}
$$

Moreover,

$$
\begin{aligned}
E[X \mid Y=v] & =\int_{0}^{v} u f_{X \mid Y}(u \mid v) d u \\
& =\int_{0}^{v} \frac{2 u^{2}}{v^{2}} d u \\
& =\frac{2 v}{3}, \quad 0 \leq v \leq 1
\end{aligned}
$$

7. $[\mathbf{7}+\mathbf{7}+\mathbf{7}$ points $]$ Let $R_{1}=1+W_{1}$ denote the value of a 1Ω resistor, where $W_{1} \sim \operatorname{Unif}[-1,1]$ is the manufacturing error. Let $R_{2}=2+W_{2}$ denote the value of a 2Ω resistor, where $W_{2} \sim$ Unif $[-1,1]$ is the manufacturing error as well. Assume that W_{1} and W_{2} are independent, i.e., R_{1}, R_{2} are independent. Suppose that a 3Ω resistor is made by concatenating R_{1} and R_{2}, i.e., $R_{3}=R_{1}+R_{2}$.
(a) Find $E\left[R_{3}\right]$ and $\operatorname{Var}\left(R_{3}\right)$.

Solution: Since $R_{3}=R_{1}+R_{2}=3+W_{1}+W_{2}$, the mean is given by $\mathbb{E}\left[R_{3}\right]=$ $\mathbb{E}\left[3+W_{1}+W_{2}\right]=3$. The variance is given by

$$
\operatorname{Var}\left(R_{3}\right)=\operatorname{Var}\left(3+W_{1}+W_{2}\right)=\operatorname{Var}\left(W_{1}\right)+\operatorname{Var}\left(W_{2}\right)=\frac{2^{2}}{12}+\frac{2^{2}}{12}=\frac{2}{3}
$$

Here, the independence of W_{1} and W_{2} has been used.
(b) Assume that we bought 10 samples $X_{1}, X_{2}, \ldots, X_{10}$, of R_{1}, i.e., $X_{i}=1+W_{i}$ and $W_{i} \sim \operatorname{Unif}[-1,1], i=1,2, \ldots, 10$ are independent random variables. Find the mean square error, $\mathbb{E}\left[(\hat{X}-\mu)^{2}\right]$, of the sample mean $\hat{X}=\left(X_{1}+X_{2}+\cdots+X_{10}\right) / 10$, where $\mu=E\left[X_{i}\right], i=1,2, \ldots, 10$.
Solution: First, $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(W_{i}\right)=\frac{2^{2}}{12}=\frac{1}{3}, i=1,2, \ldots, 10$. Additionally, \hat{X} is unbiased, i.e., $E[\hat{X}]=\mu=1$. Then, the MSE is

$$
\mathbb{E}\left[(\hat{X}-\mu)^{2}\right]=\operatorname{Var}(\hat{\mathrm{X}})=\frac{1}{100} \sum_{i=1}^{10} \operatorname{Var}\left(X_{i}\right)=\frac{\sigma^{2}}{10}=\frac{1}{30} .
$$

(c) Use Markov's inequality to upper bound $\mathbb{P}\left((\hat{X}-\mu)^{2} \geq 0.1\right)$.

Solution: By Markov's inequality,

$$
\mathbb{P}\left[(\hat{X}-\mu)^{2} \geq 0.1\right] \leq \frac{\mathbb{E}\left[(\hat{X}-\mu)^{2}\right]}{0.1}=10 \times \frac{1}{30}=\frac{1}{3} .
$$

8. $\left[\mathbf{1 0}+\mathbf{1 0 + 1 0}\right.$ points] Assume that if hypothesis $0\left(H_{0}\right)$ is true, then the random variable X takes values $-2,-1,0,1,2$, each with probability $1 / 5$, and if hypothesis $1\left(H_{1}\right)$ is true, then the random variable X takes the values -1 with probability $1 / 4,0$ with probability $1 / 2$ and 1 with probability $1 / 4$. The prior probabilities satisfy $\pi_{0} / \pi_{1}=2$.
(a) Find the MAP decision rule given an observation $X=k$.

Solution:

X	-2	-1	0	1	2
H_{0}	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$
H_{1}	0	$1 / 4$	$1 / 2$	$1 / 4$	0

It is clear that for $X=2$ and $X=-2, H_{0}$ will be selected.
For $X=-1$ and $X=1$, we have $\Lambda(1)=\Lambda(-1)=\frac{1 / 4}{1 / 5}=\frac{5}{4}<2$ and hence, H_{0} will be selected as well.
For $X=0$, we have $\Lambda(0)=\frac{1 / 2}{1 / 5}=\frac{5}{2}>2$ and hence, H_{1} will be selected in this case.
(b) Compute the average error probability p_{e} of the MAP decision rule.

Solution: From $\pi_{0} / \pi_{1}=2$ we get $\pi_{0}=2 / 3$ and $\pi_{1}=1 / 3$.

$$
\begin{aligned}
p_{e} & =\pi_{0} p_{\text {false alarm }}+\pi_{1} p_{\text {miss }} \\
& =\frac{2}{3} \frac{1}{5}+\frac{1}{3}\left(\frac{1}{4}+\frac{1}{4}\right) \\
& =\frac{27}{90}
\end{aligned}
$$

(c) Suppose that instead of an observation of X we are given the sum of two independent realizations of X (under the same hypothesis). If the sum of these two realizations is 0 , which hypothesis will the ML decision rule declare as the true hypothesis?

Solution:

Denote by X_{1} and X_{2} the outcome of the two realizations of X, and by Y the sum $X_{1}+X_{2}$.

Under H_{0}, we have

$$
\begin{aligned}
P\left(Y=0 \mid H_{0}\right) & =P\left(X_{1}=0, X_{2}=0 \mid H_{0}\right)+P\left(X_{1}=1, X_{2}=-1 \mid H_{0}\right) \\
& +P\left(X_{1}=-1, X_{2}=1 \mid H_{0}\right)+P\left(X_{1}=-2, X_{2}=2 \mid H_{0}\right) \\
& +P\left(X_{1}=2, X_{2}=-2 \mid H_{0}\right) \\
& =P\left(X_{1}=0 \mid H_{0}\right) P\left(X_{2}=0 \mid H_{0}\right)+P\left(X_{1}=1 \mid H_{0}\right) P\left(X_{2}=-1 \mid H_{0}\right) \\
& +P\left(X_{1}=-1 \mid H_{0}\right) P\left(X_{2}=1 \mid H_{0}\right)+P\left(X_{1}=-2 \mid H_{0}\right) P\left(X_{2}=2 \mid H_{0}\right) \\
& +P\left(X_{1}=2 \mid H_{0}\right) P\left(X_{2}=-2 \mid H_{0}\right)=5\left(\frac{1}{5}\right)^{2}=\frac{1}{5}
\end{aligned}
$$

Under H_{1}, we have

$$
\begin{aligned}
P\left(Y=0 \mid H_{1}\right) & =P\left(X_{1}=0, X_{2}=0 \mid H_{1}\right)+P\left(X_{1}=1, X_{2}=-1 \mid H_{1}\right)+P\left(X_{1}=-1, X_{2}=1 \mid H_{1}\right) \\
& =P\left(X_{1}=0 \mid H_{1}\right) P\left(X_{2}=0 \mid H_{1}\right)+P\left(X_{1}=1 \mid H_{1}\right) P\left(X_{2}=-1 \mid H_{1}\right) \\
& +P\left(X_{1}=-1 \mid H_{1}\right) P\left(X_{2}=1 \mid H_{1}\right)=\frac{1}{2} \frac{1}{2}+2 \frac{1}{4} \frac{1}{4}=\frac{3}{8} .
\end{aligned}
$$

Since $1 / 5<3 / 8, H_{1}$ will be chosen as the correct hypothesis.
9. [10 points] Let $X \sim \mathcal{N}(1,1)$. Use Chebyshev's inequality to obtain an upper bound for $P\left(3+|2 X-2|^{3} \geq 67\right)$.
Solution:

$$
\begin{aligned}
P\left(3+|2 X-2|^{3} \geq 67\right) & =P\left(|2 X-2|^{3} \geq 4^{3}\right)=P(|2 X-2| \geq 4) \\
& =P(|X-E[X]| \geq 2) \leq \frac{\operatorname{Var}(X)}{2^{2}}=\frac{1}{4} .
\end{aligned}
$$

10. [4+8 points] Let $X \sim \mathcal{N}(0,1)$ and $Y=a X+b$ for some real numbers a, b with $a>0$. Suppose $\sigma_{Y}^{2}=4$.
(a) Determine a.

Solution: Clearly,

$$
\sigma_{Y}^{2}=a^{2} \sigma_{X}^{2}=a^{2}
$$

Therefore, $a=2$.
(b) Assume that $Y=0$ is observed. Find the Maximum Likelihood estimate of b for the value of a in part (a).
Solution: Clearly, $Y \sim \mathcal{N}\left(a \mu_{X}+b, \sigma_{Y}^{2}\right)=\mathcal{N}(b, 4)$ (can be also computed using the scaling rule for pdfs). For b :

$$
L(b)=f_{Y}(0)=\frac{1}{\sqrt{8 \pi}} e^{-\frac{(0-b)^{2}}{8}},
$$

which is maximized for $\hat{b}_{M L}=0$.
11. $\left[\mathbf{7}+\mathbf{7}+\mathbf{7}\right.$ points] Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(a) Define the positive random variable $Y=e^{X} . Y$ is said to have a lognormal distribution with parameters μ, σ^{2}. Find $f_{Y}(y), y>0$.
Solution:

$$
F_{Y}(y)=P\left(e^{X} \leq y\right)=P(X \leq \ln y)=F_{X}(\ln y) .
$$

By differentiating we obtain:

$$
f_{Y}(y)=f_{X}(\ln y)(\ln y)^{\prime}=\frac{1}{y \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln y-\mu)^{2}}{2 \sigma^{2}}} .
$$

(b) Suppose that $Z=X+2 W$, where $W \sim \mathcal{N}(0,1)$ is independent of X. Compute the unconstrained minimum MSE estimator $E[Z \mid X]$. Your answer should be a function of X.
Solution: X, W are jointly Gaussian since they are independent. For the same reason, Z, X are jointly Gaussian. Therefore,

$$
E[Z \mid X]=\mu_{Z}+\frac{\operatorname{Cov}(X, Z)}{\sigma_{X}^{2}}\left(X-\mu_{X}\right)=\mu+\frac{\sigma^{2}}{\sigma^{2}}(X-\mu)=X .
$$

Alternative Solution:

$$
E[Z \mid X]=E[X+2 W \mid X]=E[X \mid X]+2 E[W \mid X]=X+2 E[W]=X,
$$

where the independence of X, W has been used.
(c) For Z in the part (b) compute $P(Z \geq \mu)$.

Solution: $Z \sim \mathcal{N}\left(\mu, \sigma^{2}+4\right)$. Therefore,

$$
P(Z \geq \mu)=P\left(\frac{Z-\mu}{\sqrt{\sigma^{2}+4}} \geq \frac{\mu-\mu}{\sqrt{\sigma^{2}+4}}\right)=P(\tilde{Z} \geq 0)=Q(0)=\frac{1}{2},
$$

where $\tilde{Z} \sim \mathcal{N}(0,1)$.

