ECE 313: Exam II

Thursday, July 20, 2017
5.15-6.30 p.m.

3015 ECEB

Name: (in BLOCK CAPITALS)

NetID: \qquad

Signature:

Instructions

This exam is closed book and closed notes except that one $8.5 " \times 11 "$ sheet of notes is permitted: both sides may be used. Calculators, laptop computers, PDAs, iPods, cellphones, e-mail pagers, headphones, etc. are not allowed.
The exam consists of five problems worth a total of 100 points. The problems are not weighted equally, so it is best for you to pace yourself accordingly. Write your answers in the spaces provided, and reduce common fractions to lowest terms, but DO NOT convert them to decimal fractions (for example, write $\frac{3}{4}$ instead of $\frac{24}{32}$ or 0.75).
SHOW YOUR WORK; BOX YOUR ANSWERS. Answers without appropriate justification will receive very little credit. If you need extra space, use the blank page at the end of the exam.

1. [18 points] Let X be a random variable with CDF plotted below.

(a) Obtain $P\{X<10\}$.
(b) Obtain $P\{X>-5\}$.
(c) Obtain $P\{X=1\}$.
(d) Obtain $P\{|X| \leq 10\}$.
(e) Determine if X is a discrete, continuous or mixed-type random variable, and explain why.
2. [20 points] Let X have pdf $f_{X}(u)=|u|$ for $u \in[-1,1]$ and zero else.
(a) Determine $P\left\{X>-\frac{1}{2}\right\}$.
(b) Determine $P\left\{X<0 \left\lvert\, X>-\frac{1}{2}\right.\right\}$.
(c) Let $Z=X^{3}$, determine its pdf $f_{Z}(c)$ for all c, and determine its mean, $E[Z]$.
3. [20 points] The three parts of this problem are unrelated
(a) Let $X \sim N(-2,9)$. Determine $P\{|X|<3\}$ in terms of the Φ or Q functions.
(b) Let $Z \sim N\left(\mu_{Z}, \sigma_{Z}^{2}\right)$. It is known that $P\{Z<-1.34$ or $Z>3.34\}=0.242$ and that $P\{Z>3.34\}=0.121$. Determine μ_{Z}.
(c) Let $Y \sim \operatorname{Binomial}(100,0.5)$. Use the Gaussian approximation with continuity correction to determine $P\{Y<60\}$ in terms of the Φ or Q functions.
4. [22 points] Suppose the number of visitors to a popular website follows a Poisson process with rate 4 visitors per second. NOTE: you do not need to simplify the answers to this problem.
(a) What is the probability of exactly three visitors each minute in four consecutive minutes?
(b) Let $0<t_{1}<t_{2}$, what is the probability that the first visitor arrives between t_{1} and t_{2} ? Assume that both t_{1} and t_{2} are measured in seconds.
(c) Let $0<t_{1}<t_{2}$, what is the probability that the second visitor arrives between t_{1} and t_{2} given that no visitors arrived before t_{1} ? Assume that both t_{1} and t_{2} are measured in seconds.
5. [20 points] Suppose under hypothesis H_{1}, X has pdf $f_{1}(u)=|u|$ for $u \in[-1,1]$ and zero else; while under hypothesis H_{0}, X is uniform on [$-2,2$]. Let $\pi_{0}=\frac{2}{3}$.
(a) Obtain the MAP decision rule.
(b) Obtain $p_{\text {false alarm }}$ for the MAP rule.
(c) Determine the value(s) of π_{0} for which H_{0} would always be chosen.
