ECE 330 POWER CIRCUITS AND
ELECTROMECHANICS

LECTURE 1

COURSE INTRODUCTION
AND REVIEW OF PHASORS

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter
Sauer’s ECE 330 lecture notes. Some slides are taken from Ali Bazi’s presentations.

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.
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WHY POWER CIRCUITS AND ELECTROMECHANICS?

Electromechanics combines electrical and mechanical
processes and plays key roles at several levels:

= At generation level: synchronous machines convert
mechanical energy to electric energy.
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WHY POWER CIRCUITS AND ELECTROMECHANICS?

= At transmission-distribution level: Circuit breakers trip the
faults in affected areas.
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WHY POWER CIRCUITS AND ELECTROMECHANICS?

= At the level of loads: Electric energy is consumed by
mechanical loads through motors, mostly mductlon (three-
phase and single-phase) <

Source: pumpsandsystem.com Source: electrical-know-how.com
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WHY POWER CIRCUITS AND ELECTROMECHANICS ?

= In advanced technology: renewable energy, electric cars,
robots,..... etc. contain electromechanic systems.
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POWER CIRCUITS AND ELECTROMECHANICS

Goals:
To impart basics of three-phase power circuits, transformers,

electromechanical systems, and rotating machines.

Objectives:
To build cognitive skills, such as analytical thinking and
problem solving. The course integrates fundamentals of

advanced math and science to enhance the ability to design a
system and meet desired needs.
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COURSE OUTLINE

= Review of phasors, complex power

» Three-phase circuits, three-phase power, wye-delta conversion

* Magnetic circuits, self and mutual inductance, Maxwell’s equations
= |deal transformers, practical transformers, equivalent circuits

= Electromechanical systems, energy, co-energy, energy cycles,
computation of forces and torgues.

= Dynamic equations, numerical integration of electromechanical
systems

= Equilibrium points, linearization, stability
= Synchronous machines
* Induction machines

= Qther machines
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STRUCTURE OF POWER SYSTEMS

* Power system’s main components: generation, transmission,
distribution, and loads.
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STRUCTURE OF POWER SYSTEMS
Generating System:.

* The generating system consists of a fuel source such as
coal, water, natural gas or nuclear power.

» Hydropower accounts for about 8%, and nuclear power

20%, renewable energy 14% of electric energy production
In the US.

The turbine acting as the prime-mover converts

mechanical energy into electric energy through a three-
phase synchronous machine.

* The three-phase voltages of the generators range from
13.8 kV to 24 kV.
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STRUCTURE OF POWER SYSTEMS
Transmission System:

= Athree-phase transformer at each generator steps up the
voltage to a high value ranging from 138 kV to 765 kV.

* The transmission lines carry power over these lines to load
centers and, where appropriate, step it down to lower
voltages up to 34 kV at the bulk-power substations.

= Some Industrial customers are supplied from these

substations. This is known as the transmission—sub-
transmission system.
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STRUCTURE OF POWER SYSTEMS
Distribution System:

» Transformers step down the voltage to a range of 2.4 kV to
69 kV.

= Power is carried by main feeders to specific areas where
there are lateral feeders to step it down further to customer
levels, such as 208, 240, or 600 volts.

* The distribution transformers serve anywhere from 1 to 10

customers.
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STRUCTURE OF POWER SYSTEMS
The classes of entities in the electricity market are:

= Generator companies (GENCOs), also called
Independent power producers (IPPs).

= Transmission companies TRANSCOs,

“heir primary responsibility is to transport power
from generators to customers and make the

transmission system available to all.
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STRUCTURE OF POWER SYSTEMS

= Distribution companies DISCOs,

owning and operating the local distribution network.
* Independent system operator (1SO)
The ISO is charged with ensuring the reliability and

security of the entire system.
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DYNAMICS OF POWER SYSTEMS AND COMPONENTS

* The power system iIs a dynamic one, it is described by a
set of vector of differential equations X =f (x +u)

= The time scales in the response of this equation range
from milliseconds, in the case of electromagnetic
transients, to a few seconds in the control of frequency,
and a few hours in the case of boiler dynamics.

= Therefore, we analyze such equations for time-domain

response, steady-state sinusoidal behavior, equilibrium
points, stability, etc.
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DYNAMICS OF POWER SYSTEMS AND COMPONENTS
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DYNAMICS OF POWER SYSTEMS AND COMPONENTS

» Diagram does not show all the complex dynamic

Interaction between components and their controls.
» Electrical side contains mechanical dynamics(TCUL)

= Mechanical side contains components with electrical
dynamics (electrical valves)
= After the model is derived we put it in the state-space

form.
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REVIEW OF PHASORS

* Phasors represent quantities with magnitude and angle
with respect to a reference and are commonly used In
energy systems.

» Example: v (t)=V_cos(wt+0,)

Euler’s expansion: el = cos(a) + jsin(«)
Then, v (f) can be written as
V(t)=Re{V el 1=-RefV ei“e/%}=Ref{2Ve!*}

V

where V_=Tr;ej6° =V ..+26, is the RMS phasor with

cosine reference.
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REVIEW OF PHASORS

* Recall: RMS (root-mean square) where v iIs a
function of time, t, Is the initial time, and 7 Is the
period of V.

L

1 t, +T
"\ j (t)
» How do phasors apply in electric circuits?
R L

« Example: AAN YA

4

v(t) I(®)

+T V
V ?cos’(wt +4 )dt =L
{ 5

1
VT_

FInd v (t) for i@t)=1, sin(wt) A
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REVIEW OF PHASORS

« Time-domain approach: R L
;_JVNAVT:::JWﬂPWL
v(it)=Ri(t)+L dldf) V() i(t)

v(t)=RI_sin(wt)+Lwl  cos(wt)

V()= \/RI +(Laol, ) Cos[wt_tanl( RI n

L wl

m

For R=2Q, L=1/377H, w=377rad/s, and /= 10A,
( ( \)
2x10

i><377 x10

\ \ 377 J)

2
V(t):\/(2x10)2+($x377x10) cos| 377t —tan™*

v (t)=22.36c0s(377t —63.4°) V
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REVIEW OF PHASORS

* Frequency-domain approach (phasors)

Time-domain — Frequency-domain

v(t) -V R >R
it)—>1 Lo joL=jX, (X =ol)
1 -] . -1
C- = =X, (Xpo=—
jJoC wC e Ko a)C)

* In frequency-domain V =Z | (Ohm’s law)where Zcan
be a series-parallel combination of R, X, and/or X, .
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REVIEW OF PHASORS
* Freqguency-domain approach:

V =(R+ joL)l wherel = £4—90° A (RMS)

J2
_ [
V<[ 2+ j377 2 jlo /—90°
. 377 )2
| 1)) 10
V =|\J2°+1° L tanl(—jj — /-90°
I ( 2))|\2
_ ( R jooL
V = % 4(26.560—900) WW—M
\ \/E + — >

1 <|

V' =15.81/(-63.4° ) V(RMS)
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TWO-TERMINAL NETWORK

« Atwo-terminal electrical network has voltage at its
terminals and current flowing in and out of its
terminals.

i(0) i0)

+ Load + Source
v(t) Notation | V(t) Notation

* The Instantaneous power is p(t)=v ()i (t).

« Fori(t)=1,cos(wt+8)A andv()=V_ cos(wt+6,)V
we get
p(t)=V _1_cos(ot+8 )cos(ot +6.)
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TWO-TERMINAL NETWORK

COS COS B = %[cos(a — p)+cos(a + P)]

VoI

p(t):szIm cos(8, —6. )+ cos(2mt +4 +6.) W

The first term is time-independent, while the second
term is a sinusoid at double frequency.

ECE ILLINOIS Mirrinors



TWO-TERMINAL NETWORK

* The average power Is thus

_ET 27T
P == !P(t)d(t) ==

P = szlm cos(6, —6,).

In

 This is called the active or real power and its unit Is
watts (W).

* The power factor Is the cosine of the phase angle
between v (7)) and i(t).
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POWER FACTOR

* The power factor (FF) is thus P.F.=cos(8,-6).

* The power factor can be: N o
—Lagging: 0° <@, -6 <90° ‘ [ |

—Leading: -90°<@, -0 <0°
—Unity: 6,-6,=0 G
Therefore, 0<P.F.<1,

and the highest real power oo o
exists when PF =1. Source: grupovision.com
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APPARENT POWER AND REACTIVE POWER

. VI
* The apparent poweris S = m2m

* The apparent power unit Is volt-amps (VA).

. . Vol
* The reactive poweris Q, = mz”‘sm(ev—a).

* The reactive power unit Is volt-amps-reactive

(VARYS).
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COMPLEX POWER

* The Instantaneous power Is
Vm I m

p(t):szIm cos(8, —6. )+ cos(2mt +4 +6.) W

* The time varying component

szlm cos (2ot + 6 +<9i)=szIrn (cos[(2at +26,) + (6, - 6]}

sz'm sin (2wt +26,)sin (6, -6,)

=V"‘2|m oS (2wt +26.)cos(6, —6.) -
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COMPLEX POWER

e Define

Q.. _lem sin(@, —6,), (Reactive power)

2
pt)=P, +P, cos(2wt +26,)-Q. sin(2wt +6,)
=P. (1+cos(2wt +6.))—Q. sin(2wt + 26,)

* The real power can be written as

P szlmcos(e —0) =

In

cos(6, —6.)

rms rms

ECE ILLINOIS Mirrinors



PHASOR REPRESENTATION

_Re{ nln gidg- 41=Re{v_e'%l_e 1%}

rms

* The reactlve power can be written as

Q _ |m{Vm2Im e-gve_jei}: Im{\/rmsejev Irmse_jei}
* The voltages and currents can be written as phasors:
V_e%=Vandl_e"=1.

Reactive Power

P B RE(\/ I ) rms n“ns COS(Q 9 )
an — Im(\/ I ) nns rms Sln(H 9 ) — \
Source: Tonex.com Real Powe
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Complex Power

* Define the complex poweras S =P +jQ,

e ThenS can be writtenas S=v 1~

» The quantity 1" is the complex conjugate of 1.
« S can also be written as

S =S/(6,-6)
* Note that .
V Q,
S —_Mm m P2—|— .2 %
S =\Pr +Q; !

In
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ALTERNATE FORMS OF COMPLEX POWER

* If the load Is Z =R+ jX, connected across the source vV
By Ohm’slaw: V =Z I , but S=V I~

Then s can be written as s =1°R + jI 2x Also,
P=1°Rand Q=12X, Zand P.F.=cos(angle(Z)).

 Thus, Q >0whenz isinductive, X =w L

1
oC
« S and Z are not phasors but complex quantities.
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EXAMPLE: LC FILTER AND R LOAD

* The circuit shown is commonly used as an LC filter
to supply a load, which is resistive in this case.

* Find the current, real, reactive, and complex powers,
and the P.F. for v(t)=+/2V.__ cos(377t)

_ —j _(Y\LKY\
Z:ja)L+(R//—J + _>i(t)
wC v(t) —C R
5 _ oL+ j(@’RLC —R) '
@wRC — |
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EXAMPLE: LC FILTER AND R LOAD

"Ll _120v,L=1mH.C =6.8mF, and R =100
Z =0.01972-39.41° =0.0152 - j0.0125Q
| === 12020 =6091.4.,39.41°A
Z 0.0197£-39.41°

i(t) =6091.4+/2 cos(377t +39.41°) ]

_fYYY\
S=V | =731/-39.41°kVA o

v(t) —C R

P. =731cos(—39.41°) =564.8kW -

Q.. =731sin(—39.41°) = -464.1kVAR
P.F.=c0s(—39.41°) =0.773 leading (6, — 6 = —39.41°)
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