ECE 330
 POWER CIRCUITS AND ELECTROMECHANICS

LECTURE 12 ELECTROMECHANICAL SYSTEMS (2)

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter Sauer's ECE 330 lecture notes. Some slides are taken from Ali Bazi's presentations

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.

ROTATIONAL SYSTEM

This is the basic configuration of many machines.

Both rotor and stator have $\mu=\infty$.

The radial air gap has length g.

The cylindrical rotor is of length ℓ.

At time t, θ is the angular displacement.

Find λ_{s}, λ_{r} as a function of i_{s}, i_{r}, and θ.

Also find v_{s} and v_{r} of the cylindrical rotor.

ROTATIONAL SYSTEM

Assume H is constant in each region

ROTATIONAL MECHANICAL SYSTEM

Four regions with different value of H :
$0<\phi<\theta \quad, \quad \theta<\phi<\pi \quad, \pi<\phi<\pi+\theta \quad, \pi+\theta<\phi<2 \pi$
H_{1}
H_{2}
H_{3}
H_{4}
Ampere's circuital law
Contour 1

$$
\begin{equation*}
H_{1}-H_{4}=\frac{N_{s} i_{s}}{g} \tag{1}
\end{equation*}
$$

Contour 2

$$
\begin{equation*}
H_{2}-H_{1}=\frac{N_{r} i_{r}}{g} \tag{2}
\end{equation*}
$$

Contour 3

$$
\begin{equation*}
H_{3}-H_{2}=-\frac{N_{s} i_{s}}{g} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
H_{4}-H_{3}=-\frac{N_{r} i_{r}}{g} \tag{4}
\end{equation*}
$$

Contour 4

ROTATIONAL MECHANICAL SYSTEM

Gauss's law for magnetic fields

$$
\oint_{s} B \bullet n d a=0
$$

Multiplying by the circumferential area of each region

$$
\begin{align*}
& \mu_{0} \ell R\left(H_{1} \theta+H_{2}(\pi-\theta)+H_{3} \theta+H_{4}(\pi-\theta)\right)=0 \\
& \mu_{0} \ell R\left[\theta\left(H_{1}-H_{2}+H_{3}-H_{4}\right)+\pi\left(H_{2}+H_{4}\right)\right]=0 \\
& H_{1}-H_{2}+H_{3}-H_{4}=0 \\
& H_{2}+H_{4}=0 \Rightarrow H_{2}=-H_{4} \ldots \ldots \ldots . .(5) \tag{5}
\end{align*}
$$

ROTATIONAL MECHANICAL SYSTEM

$H_{1}+H_{3}=0 \Rightarrow H_{1}=-H_{3} \ldots \ldots \ldots \ldots$...(6)

Subtracting 2 from 1 and using 5

$$
2 H_{1}=\frac{N_{s} i_{s}-N_{r} i_{r}}{g} \quad, \quad H_{1}=\frac{N_{s} i_{s}-N_{r} i_{r}}{2 g}=-H_{3}
$$

Subtracting 3 from 2 and using 6:

$$
H_{2}=\frac{N_{s} i_{s}+N_{r} i_{r}}{2 g}=-H_{4}
$$

ROTATIONAL MECHANICAL SYSTEM

STATOR FLUX LINKAGES

We first note that arc length of the coil with an angle θ is $R \theta$, where R is the radius

$$
\begin{aligned}
\phi_{s} & =\int_{s} \underline{B} \cdot \underline{n} d a=\int_{0}^{\theta} \mu_{o} H_{1} \ell R d \phi+\int_{\theta}^{\pi} \mu_{o} H_{2} \ell R d \phi \\
& =\left(\mu_{o} H_{1}\right)(R \theta l)+\left(\mu_{o} H_{2}\right)(\pi-\theta) R \ell
\end{aligned}
$$

ROTATIONAL MECHANICAL SYSTEM

the flux through one turn of stator coil is

$$
\begin{aligned}
& \lambda_{s}=N_{s} \phi_{s}=N_{s} \mu_{o} H_{1} R \theta \ell+N_{s} \mu_{o} H_{2} R(\pi-\theta) \ell \\
& \lambda_{s}=\frac{N_{s}^{2} \mu_{0} R l \pi}{2 g} i_{s}+N_{s} N_{r} \frac{\mu_{0} R l \pi}{2 g}\left(1-\frac{2 \theta}{\pi}\right) i_{r} \\
& \lambda_{s}=N_{s}^{2} L_{0} i_{s}+N_{s} N_{r} L_{0}\left(1-\frac{2 \theta}{\pi}\right) i_{r}, \quad L_{0}=\frac{\mu_{0} R l \pi}{2 g} \\
& \lambda_{s}=L_{s} i_{s}+L_{m}(\theta) i_{r} \quad \text {, where } \\
& L_{s}=N_{s}^{2} L_{0}, \quad L_{m}(\theta)=N_{s} N_{r} L_{0}\left(1-\frac{2 \theta}{\pi}\right)
\end{aligned}
$$

ROTATIONAL MECHANICAL SYSTEM

Rotor flux linkages:

$$
\lambda_{r}=N_{r} \int_{s} B \bullet n d a
$$

$$
=N_{r} \int_{\theta}^{\pi} \mu_{0} H_{2} \ell R d \phi+N_{r} \int_{\pi}^{\pi+\theta} \mu_{0} H_{3} \ell R d \phi
$$

$$
\lambda_{r}=N_{r} \mu_{0} H_{2} \ell R(\pi-\theta)+N_{r} \mu_{0} H_{3} \ell R \theta
$$

$$
\lambda_{r}=N_{r} \mu_{0} \frac{N_{s} i_{s}+N_{r} i_{r}}{2 g} R \ell(\pi-\theta)-N_{r} \mu_{0} \frac{N_{s} i_{s}-N_{r} i_{r}}{2 g} R \ell \theta
$$

ROTATIONAL MECHANICAL SYSTEM

$$
\begin{aligned}
\lambda_{r}= & N_{r} \mu_{0} \frac{N_{s} i_{s}}{2 g} R \ell \pi-N_{r} \mu_{0} \frac{N_{s} i_{s}}{2 g} R \ell \theta+N_{r} \mu_{0} \frac{N_{r} i_{r}}{2 g} R \ell \pi-\frac{N_{r} i_{r}}{2 g} R \ell \theta \\
& -N_{r} \mu_{0} \frac{N_{s} i_{s}}{2 g} R \ell \theta+N_{r} \mu_{0} \frac{N_{r} i_{r}}{2 g} R \ell \theta \\
\lambda_{r}= & N_{s} N_{r} L_{0}\left(1-\frac{2 \theta}{\pi}\right) i_{s}+N_{r}^{2} L_{0} i_{r} \\
= & L_{m}(\theta) i_{s}+L_{r} i_{r}
\end{aligned}
$$

Note: $L_{r}=N_{r}^{2} L_{0}$

INDUCTANCE IN THE ROTATIONAL EXAMPLE

- The flux linkages are

$$
\begin{aligned}
\lambda_{s} & =L_{s} i_{s}+L_{m}(\theta) i_{r} \\
\lambda_{r} & =L_{r} i_{r}+L_{m}(\theta) i_{s}
\end{aligned}
$$

The actual mutual inductance is a triangular wave, but is usually approximated as a sine wave.

$$
L_{m}=M \cos (\theta) .
$$

ROTATIONAL MECHANICAL SYSTEM

If:

$$
L_{m}=M \cos \theta
$$

$$
v_{s}=\frac{d \lambda_{s}}{d t}=L_{s} \frac{d i_{s}}{d t}+M \cos \theta \frac{d i_{r}}{d t} \underbrace{-i_{r} M \sin \theta \frac{d \theta}{d t}}_{\text {Speed voltage }}
$$

$$
v_{r}=\frac{d \lambda_{r}}{d t}=L_{r} \frac{d i_{r}}{d t}+M \cos \theta \frac{d i_{s}}{d t} \underbrace{-i_{s} M \sin \theta \frac{d \theta}{d t}}_{\text {Speed voltage }}
$$

LINEAR SYSTEMS

- A linear system can be formulated based on the flux linkage and current equations.

$$
\begin{aligned}
& {\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]=\left[\begin{array}{cc}
L_{s} & L_{m}(\theta) \\
L_{m}(\theta) & L_{r}
\end{array}\right]^{-1}\left[\begin{array}{c}
\lambda_{s} \\
\lambda_{r}
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]=\frac{1}{L_{s} L_{r}-L_{m}^{2}(\theta)}\left[\begin{array}{cc}
L_{r} & -L_{m}(\theta) \\
-L_{m}(\theta) & L_{s}
\end{array}\right]\left[\begin{array}{c}
\lambda_{s} \\
\lambda_{r}
\end{array}\right]
\end{aligned}
$$

