ECE 330 POWER CIRCUITS AND ELECTROMECHANICS

LECTURE 17 FORCES OF ELECTRIC ORIGIN – ENERGY APPROACH(1)

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter Sauer's ECE 330 lecture notes. Some slides are taken from Ali Bazi's presentations

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.

MECHANICAL EQUATIONS

• Newton's law states that acceleration force in the positive x direction is equal to the algebraic sum of all the forces acting on the mass in the positive x direction

MECHANICAL EQUATIONS

• In a linear or translational system with displacement x, velocity v, mass M, and different forces (along x):

$$\frac{dx}{dt} = v$$

$$M \frac{dv}{dt} = f^{e} + f_{spring} + f_{damper} + f_{ext}$$

• In a rotational system with displacement θ , rotational speed ω , moment of inertia J, and different torques:

$$\frac{d\theta}{dt} = \omega, \qquad J\frac{d\omega}{dt} = T^e + T_{spring} + T_{damper} + T_{ext}$$

MECHANICAL EQUATIONS

- Forces and torques with superscript *e* are of electrical origin.
- In a translational system, power is

$$P = f \upsilon = f \frac{dx}{dt}$$

• In a rotational system, power is

$$P = T \omega = T \frac{d\theta}{dt}$$

In an electro-mechanical energy conversion system, energy is transferred from the electrical side to the mechanical side as follows: (mechanical to electrical transfer is backwards):

• By differentiating the energy with respect to time, power transfer can be shown to be:

Neglecting the field losses, we get the simple relation for the coupled system (shown dotted)

The force of electrical origin can be derived using the energy function $W_{\rm m}$: $\frac{dW_{\rm m}}{dt} = vi - f^e \frac{dx}{dt}$

$$\frac{dW_m}{dt} = i \frac{d\lambda}{dt} - f^e \frac{dx}{dt}$$

Choosing λ and x as independent variables:

$$\frac{dW_{m}(\lambda,x)}{dt} = \frac{\partial W_{m}(\lambda,x)}{\partial \lambda} \frac{d\lambda}{dt} + \frac{\partial W_{m}(\lambda,x)}{\partial x} \frac{dx}{dt}$$

$$i(\lambda,x) = \frac{\partial W_m(\lambda,x)}{\partial \lambda}, \qquad f^e(\lambda,x) = -\frac{\partial W_m(\lambda,x)}{\partial x}$$

In a rotational system

$$\frac{dW_{m}}{dt} = i \frac{d\lambda}{dt} - T^{e} \frac{d\theta}{dt}$$

Choosing λ and θ as independent variables:

$$\frac{dW_{m}(\lambda,\theta)}{dt} = \frac{\partial W_{m}(\lambda,\theta)}{\partial \lambda} \frac{d\lambda}{dt} + \frac{\partial W_{m}(\lambda,\theta)}{\partial \theta} \frac{d\theta}{dt}$$

$$i(\lambda,\theta) = \frac{\partial W_m(\lambda,\theta)}{\partial \lambda}$$
, $f^e(\lambda,x) = -\frac{\partial W_m(\lambda,\theta)}{\partial x}$

FORCES OF ELECTRICAL ORIGIN

When the system moves from one operating point to another

$$\int_{t_a}^{t_b} \frac{dW_m}{dt} dt = \int_{t_a}^{t_b} (i(\lambda, x) \frac{d\lambda}{dt} - f^e(\lambda, x) \frac{dx}{dt}) dt$$

Change variable

$$\int_{m_a}^{m_b} dW_m = \int_{\lambda_a}^{\lambda_b} i(\lambda, x) d\lambda - \int_{x_a}^{x_b} f^e(\lambda, x) dx$$

$$W_{mb} - W_{ma} = \int_{\lambda_a}^{\lambda_b} i(\lambda, x) d\lambda - \int_{x_a}^{x_b} f^e(\lambda, x) dx$$

FORCES OF ELECTRICAL ORIGIN

Integrate x keeping λ constant at λ_a , then integrate λ keeping x at x_b

$$W_{mb} - W_{ma} = \int_{\lambda_a}^{\lambda_b} i(\lambda, x_b) d\lambda - \int_{x_a}^{x_b} f^e(\lambda_a, x) dx$$

If $\lambda_a = 0$ and $W_{ma} = 0$ ($f^e = 0$), then:

$$W_{mb} = \int_0^{\lambda_b} i(\lambda, x) d\lambda$$

Letting λ_b any λ and x_b any x, then:

$$W_{m}(\lambda,x) = \int_{0}^{\lambda} i(\lambda,x) d\lambda$$

To compute $W_m(\lambda, x)$, we need to express $i = i(\lambda, x)$ from the flux linkage equation. This would require solving for i from $\lambda = \lambda(i, x)$. Particularly in multi-port systems, this could be quite complicated.

We can avoid this problem by defining a quantity called *co-energy* directly computable from $\lambda = \lambda(i, x)$ and then using it to compute f^e .

Choosing λ and x as independent variables, define:

$$W_m' \triangleq \lambda i - W_m$$

Using i and x as independent variables

$$\frac{dW'_{m}(i,x)}{dt} = \frac{\partial W'_{m}(i,x)}{\partial i} \frac{di}{dt} + \frac{\partial W'_{m}(i,x)}{\partial x} \frac{dx}{dt}$$

$$\frac{dW'_{m}(i,x)}{dt} = \lambda \frac{di}{dt} + i \frac{d\lambda}{dt} - \frac{dW_{m}}{dt}$$

$$\frac{dW'_{m}(i,x)}{dt} = \lambda \frac{di}{dt} + i \frac{d\lambda}{dt} - (i \frac{d\lambda}{dt} - f^{e} \frac{dx}{dt})$$

The left sides of these equations are the same,

comparing

terms:

$$\lambda(i,x) = \frac{\partial W'_m}{\partial i}$$

$$f^{e}(i,x) = -\frac{\partial W'_{m}}{\partial x}$$

Computation of W'_m

Method # 1

$$W'_{m}(i,x) \triangleq \lambda(i,x) - W_{m}(\lambda(i,x))$$

Method # 2

$$\frac{dW'_{m}}{dt} = \lambda \frac{di}{dt} + f^{e} \frac{dx}{dt}$$

$$\int_{t_a}^{t_b} \frac{dW'_m}{dt} dt = \int_{t_a}^{t_b} \left(\lambda \frac{d\lambda i}{dt} + f^e \frac{dx}{dt}\right) dt$$

Change of variables using i and x as independent variables

$$W'_{mb} - W'_{ma} = \int_{i_a}^{i_b} \lambda(i, x) di + \int_{x_a}^{x_b} f^e(i, x) dx$$

Choose a path

Integrate x keeping i constant at i_a , then integrate λ keeping x at x_b

$$W'_{mb} - W'_{ma} = \int_{i_a}^{i_b} \lambda(i, x_b) di + \int_{x_a}^{x_b} f^e(i_a, x) dx$$

Use $i_a = 0$ (so $f^e = 0$) and assume $W'_{ma} = 0$

Let i_b be any i and x_b be any x

$$W'_m(i,x) = \int_0^i \lambda(i,x) di$$
 $(x = const.)$

EXAMPLE

 ℓ_c : The mean length of the magnetic path

A: Cross-sectional area, the magnetic circuit has finite μ .

Find the force of electric origin f^e .

EXAMPLE

Ampere's circuital law gives:

$$H_c \ell_c + H_1 x + H_2 x = Ni$$

Applying Gauss's law around the moving part:

$$\mu_0 H_1 A = \mu_0 H_2 A$$
$$H_1 = H_2$$

Applying Gauss's law to the closed surface around the upper fixed surface $\mu H_c A = \mu_0 H_1 A$

$$\boldsymbol{H}_c = \frac{\mu_0}{\mu} \boldsymbol{H}_1$$

EXAMPLE

$$H_c \ell_c + 2H_1 x = Ni$$

Solve for H_1 :

$$H_1 = \frac{Ni}{\left(\frac{\mu_0}{\mu} \ell_c + 2x\right)}$$

The flux linkage of the coil: $\lambda = N \phi$

$$\lambda = N \phi$$

$$= N \mu_0 H_1 A$$

$$= \frac{N \mu_0 N i}{\left(\frac{\mu_0}{\mu} \ell_c + 2x\right)} A = \frac{N^2 i}{\left(\frac{\ell_c}{\mu A} + \frac{2x}{\mu_0 A}\right)}$$

$$= \frac{\frac{1}{\sqrt{l}} \frac{l}{\ell_c}}{\left(\frac{\ell_c}{\mu A} + \frac{2x}{\mu_0 A}\right)}$$

19

The co-energy
$$W_m'$$
 is $W_m' = \int_0^i \lambda(i, x) di = \frac{N^2 i^2}{2\left(\frac{\ell_c}{\mu A} + \frac{2x}{\mu_0 A}\right)}$

The force of electric origin: $f^{e} = \frac{\partial W'_{m}}{\partial x_{m}}$

$$f^{e} = \frac{\partial W'_{m}}{\partial x}$$

$$f^{e} = \frac{-N^{2}i^{2}}{2\left(\frac{\ell_{c}}{\mu A} + \frac{2x}{\mu_{0}A}\right)^{2}} \left(\frac{2}{\mu_{0}A}\right) = \frac{-N^{2}}{\mu_{0}A} \frac{i^{2}}{\left(\frac{\ell_{c}}{\mu A} + \frac{2x}{\mu_{0}A}\right)^{2}}$$

Note that $\ell_c \mu A$ is the reluctance of the iron path, and is the reluctance of the two air gaps in series.