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ECE 330 

POWER CIRCUITS AND ELECTROMECHANICS 
 

 

LECTURE 17 

FORCES OF ELECTRIC ORIGIN – ENERGY 

APPROACH(1) 

 
 

 

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter 

Sauer’s ECE 330 lecture notes. Some slides are taken from Ali Bazi’s presentations 

 

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook. 
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MECHANICAL EQUATIONS 

• Newton’s law states that  acceleration force in the 

positive  x direction is equal to the algebraic sum of 

all the forces acting on the mass in the positive x 
direction 
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MECHANICAL EQUATIONS 

• In a linear or translational system with displacement 

x, velocity   , mass M , and different forces (along x): 

 

 

 

• In a rotational system with displacement θ,rotational 

speed ω, moment of inertia J, and different torques: 
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MECHANICAL EQUATIONS 

• Forces and torques with superscript e are of  

    electrical origin. 

• In a translational system, power is 

 

 

• In a rotational system, power is 
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ENERGY CONVERSION 

In an electro-mechanical energy conversion system,  

energy is transferred from the electrical side to the  

mechanical side as follows: (mechanical to electrical  

transfer is backwards): 
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ENERGY CONVERSION 

• By differentiating the energy with respect to time, 

power transfer can be shown to be: 
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ENERGY CONVERSION 

Neglecting the field losses, we get the simple relation 

for the coupled system (shown dotted) 
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ENERGY CONVERSION 

The force of electrical origin can be derived using the 

energy function Wm  : 

 

 

 

Choosing  λ and x as independent variables: 
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ENERGY CONVERSION 

In a rotational system 

 

 

Choosing  λ and θ as independent variables: 
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FORCES OF ELECTRICAL ORIGIN 

 
When the system moves from one operating point to 

another 
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FORCES OF ELECTRICAL ORIGIN 

 Integrate x keeping  λ constant at λa , then integrate λ  

keeping x at xb  

 

 

If λa  = 0 and  Wma = 0 (f e = 0), then: 

 

 

Letting  λb  any λ and xb   any x, then: 
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ENERGY AND CO-ENERGY 

To compute               , we need to express                

from the flux linkage equation. This would require  

solving for    from                 . Particularly in multi-port  

systems, this could be quite complicated.  

We can avoid this problem by defining a quantity  

called co-energy directly computable from                  

and then using it to compute       .  

 

 

 

 

Choosing  λ and x as independent variables, define: 

 

 

Using i and x as independent variables   
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ENERGY AND CO-ENERGY 

Choosing  λ and x as independent variables, define: 

 

 

Using i and x as independent variables   
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ENERGY AND CO-ENERGY 

 
The left sides of these equations are the same,  

comparing  

terms: 
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Method # 1 
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ENERGY AND CO-ENERGY 

 Method # 2 
   

 

 

 

 

 

Change of variables using i and x as independent variables 
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ENERGY AND CO-ENERGY 

 Choose a path 

Integrate x keeping  i  constant at ia , then integrate λ  

keeping x at xb  

 

 

Use   ia  = 0 ( so f e = 0 ) and assume           = 0 

Let ib  be  any i and xb  be any  x      
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EXAMPLE 

     : The mean length of the magnetic path  

A : Cross-sectional area, the magnetic circuit has finite μ.  

Find the force of electric origin f e. 

 
 

c
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EXAMPLE 

 Ampere’s circuital law gives: 

 

Applying Gauss’s law around the moving part: 

 

 

Applying Gauss’s law to the closed surface around the upper 

fixed surface  
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EXAMPLE 

  

 

Solve for H1:   
 

 

The flux linkage of the coil: 
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EXAMPLE 

 The co-energy          is 

 

The force of electric origin:  

 

 

 

 

 

Note that                 is the reluctance of the iron path, and                

is the reluctance of the two air gaps in series. 
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