ECE 330 POWER CIRCUITS AND ELECTROMECHANICS

LECTURE 17 SYNCHRONOUS MACHINES (1)

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter Sauer's ECE 330 lecture notes. Some slides are taken from Ali Bazi's presentations
Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.
4/9/2018
ECE ILLINOIS
Copyright © 2017 Hassan Sowidan
[1] L L I N O I S

SYNCHRONOUS MACHINES

- The main element in terms of generation of power.
- Range all the way from a few MVA to 1100 MVA.
- Can be operated as either a generator or motor.
- The large majority of applications are as generators.
- The three-phase generators have an AC winding on the stator with a wye-connection.
- The rotor is excited by a DC field winding

SYNCHRONOUS MACHINES

- It is connected to the prime movers, such as steam or hydro-turbine.
- As motors, synchronous machines are less used except at low power levels such as permanent magnet synchronous motors (PMSM).
- In certain cases, synchronous machines at a high rating are operated to act as power factor correcting devices.

SYNCHRONOUS MACHINES

- We will discuss the fundamental concepts of deriving torque expressions and only the sinusoidal steady-state operation using the equivalent circuit.

For a proper understanding of a three-phase
machine, we will motivate it via the single- and twophase machines.

SYNCHRONOUS MACHINES

Source: emadrlc.blogspot.com

SYNCHRONOUS MACHINES

Source: pelectric.blogsky.com

SYNCHRONOUS MACHINES SALIENT POLE

SYNCHRONOUS MACHINES ROUND ROTOR

SINGLE-PHASE ROTATING MACHINE

The fundamental component of mutual inductance
$N_{s} N_{r} L_{0}(1-2 \theta / \pi)$ will be $M \cos \theta$.
In practical machines, the number of turns are so positioned on stator and rotor that the higher harmonics are minimized and the mutual inductance is largely due to this fundamental component.

SINGLE-PHASE ROTATING MACHINE

The winding, instead of being concentrated, is

 distributedtator magnetic axis

SINGLE-PHASE ROTATING MACHINE

- We have already seen flux linkage derivation of single-phase machines:

$$
\begin{aligned}
& \lambda_{s}=N_{s}^{2} L_{0} i_{s}+N_{s} N_{r} L_{0}\left(1-\frac{2 \theta}{\pi}\right) i_{r}=L_{s} i_{s}+L_{s r}(\theta) i_{r} \\
& \lambda_{r}=N_{r}^{2} L_{0} i_{r}+N_{s} N_{r} L_{0}\left(1-\frac{2 \theta}{\pi}\right) i_{s}=L_{r} i_{r}+L_{r s}(\theta) i_{s} \\
& L_{s r}(\theta)=L_{r s}(\theta)=M \cos (\theta)
\end{aligned}
$$

SINGLE-PHASE ROTATING MACHINE

- The co-energy and torque are:

$$
\begin{aligned}
& W_{m}^{\prime}=\int_{0}^{i_{s}} \lambda_{s}\left(i_{s}^{\prime}, 0, \theta\right) d i_{s}^{\prime}+\int_{0}^{i_{r}} \lambda_{r}\left(i_{s}, i_{r}^{\prime}, \theta\right) d i_{r}^{\prime} \\
& =\frac{1}{2} L_{s} i_{s}^{2}+\frac{1}{2} L_{r} i_{r}^{2}+L_{s r}(\theta) i_{s} i_{r} \\
& T^{e}=\frac{\partial W_{m}^{\prime}}{\partial \theta}=\frac{\partial L_{s r}(\theta)}{\partial \theta} i_{s} i_{r}=-i_{s} i_{r} M \sin (\theta)
\end{aligned}
$$

SINGLE-PHASE ROTATING MACHINE

- The electrical differential equations are:

$$
\begin{aligned}
& \nu_{s}=i_{s} R_{s}+\frac{d \lambda_{s}}{d t} \\
& v_{r}=i_{r} R_{r}+\frac{d \lambda_{r}}{d t}
\end{aligned}
$$

SINGLE-PHASE ROTATING MACHINE

- The mechanical differential equation is:

$$
J \frac{d^{2} \theta}{d t^{2}}+K \theta+B \frac{d \theta}{d t}=T^{e}+T_{m}
$$

SINGLE-PHASE ROTATING MACHINE

Under sinusoidal excitation, the power becomes:

$$
\begin{aligned}
& i_{s}=I_{s} \cos \left(\omega_{s} t\right) \\
& i_{r}=I_{r} \cos \left(\omega_{s} t\right) \\
& P_{m}=T^{e} \frac{d \theta}{d t}=T^{e} \omega_{m}=-\omega_{m} I_{s} I_{r} M \cos \left(\omega_{s} t\right) \cos \left(\omega_{r} t\right) \sin (\theta) \\
& \theta=\omega_{m} t+\gamma \quad(\gamma \text { is some arbitary const. }) \\
& \Rightarrow P_{m}=-\omega_{m} I_{s} I_{r} M \cos \left(\omega_{s} t\right) \cos \left(\omega_{r} t\right) \sin \left(\omega_{m} t+\gamma\right)
\end{aligned}
$$

SINGLE-PHASE ROTATING MACHINE

- Power can also be expressed as:

$$
P_{m}=-\omega_{m} I_{s} I_{r} M\left[\begin{array}{l}
\sin \left(\omega_{1} t+\gamma\right)+\sin \left(\omega_{2} t+\gamma\right) \\
+\sin \left(\omega_{3} t+\gamma\right)+\sin \left(\omega_{4} t+\gamma\right)
\end{array}\right] / 4
$$

where:

$$
\begin{aligned}
& \omega_{1}=\omega_{m}+\omega_{s}-\omega_{r}, \omega_{2}=\omega_{m}-\omega_{s}+\omega_{r} \\
& \omega_{3}=\omega_{m}+\omega_{s}+\omega_{r}, \omega_{4}=\omega_{m}-\omega_{s}-\omega_{r}
\end{aligned}
$$

SINGLE-PHASE ROTATING MACHINE

Since a sinusoidal function can have no average value P_{m} can have an average value only if $\omega_{i}=0$ for

$$
i=1,2,3 \text {, or } 4 \text {, i.e., } \omega_{m}= \pm \omega_{s} \pm \omega_{r}
$$

- If $\omega_{2}=0, \omega_{m}=\omega_{s}-\omega_{r}$

$$
\left\langle P_{m(a v)}\right\rangle=\frac{-\omega_{m} I_{s} I_{r} M \sin (\gamma)}{4}
$$

A necessary condition for average power is that one of the ω_{i} 's is zero, and a sufficient condition is that $\sin \gamma \neq 0$

TWO-PHASE ROTATING MACHINE

There is average power when there is pulsating torque due to other ω_{i}^{\prime} s.

To eliminate this, we can have a two-phase machine.
In the two-phase machine, there is an additional winding on both the stator and the rotor. The twophase machine creates a rotating magnetic field.

TWO-PHASE ROTATING MACHINE

- We look at the stator magnetic field of one- and twophase machines.

$$
H \approx \frac{N_{s} i_{s}}{2 g} \sin (\psi)
$$

- With sinusoidal excitation, no rotating field as it is
- always maximum at $\psi=90^{\circ}: \quad H=\frac{N_{s} I_{s}}{2 g} \sin (\psi) \cos \left(\omega_{s} t\right)$

TWO-PHASE ROTATING MACHINE

- Two-phase machine: Rotating magnetic field!

TWO-PHASE ROTATING MACHINE

$$
\begin{aligned}
& H_{s}=H_{a s}+H_{b s} \\
& H_{s}=\frac{N_{s} i_{a s}}{2 g} \cos (\psi)+\frac{N_{s} i_{b s}}{2 g} \sin (\psi) \\
& \text { Assume }: i_{a s}=I_{s} \cos \omega_{s} t, i_{b s}=I_{s} \sin \omega_{s} t \\
& H=\frac{N_{s} I_{s}}{2 g}\left[\cos (\psi) \cos \left(\omega_{s} t\right)+\sin (\psi) \sin \left(\omega_{s} t\right)\right]
\end{aligned}
$$

TWO-PHASE ROTATING MACHINE

$H=\frac{N_{s} I_{s}}{2 g} \cos \left(\omega_{s} t-\psi\right)$
Revolving magnetic field at $t=0$, peak is at $\psi=0$

$$
t=t, \text { peak is at } \psi=\omega_{s} t
$$

Revolves continue clockwise

