ECE 330 POWER CIRCUITS AND ELECTROMECHANICS

LECTURE 18 SYNCHRONOUS MACHINES (2)

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter Sauer's ECE 330 lecture notes. Some slides are taken from Ali Bazi's presentations

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.

TWO-PHASE ROTATING MACHINE

TWO-PHASE ROTATING MACHINE

The flux linkage equations can be written by considering each coil coupled with two other coils.

Windings on rotor and stator are identical but displaced mechanically by 90 deg. in positive direction.

The two stator coils have no mutual coupling, similarly
rotor coils do not have mutual coupling.

TWO-PHASE ROTATING MACHINE

The two-phase machine

flux linkages are:
For the stator:

$$
\begin{aligned}
\lambda_{a s} & =L_{s} i_{a s}+M i_{a r} \cos (\theta)+M i_{b r} \cos \left(\theta+\frac{\pi}{2}\right) \\
& =L_{s} i_{a s}+M i_{a r} \cos (\theta)-M i_{b r} \sin (\theta) \\
\lambda_{b s} & =L_{s} i_{b s}+M i_{a r} \cos \left(-\left(\frac{\pi}{2}-\theta\right)\right)+M i_{b r} \cos (\theta) \\
& =L_{s} i_{b s}+M i_{a r} \sin (\theta)+M i_{b r} \cos (\theta)
\end{aligned}
$$

TWO-PHASE ROTATING MACHINE

For the rotor

$$
\begin{aligned}
& \lambda_{a r}=L_{r} i_{a r}+M i_{a s} \cos (-\theta)+M i_{b s} \cos \left(\frac{\pi}{2}-\theta\right) \\
& \lambda_{a r}=L_{r} i_{a r}+M i_{a s} \cos (\theta)+M i_{b s} \sin (\theta) \\
& \lambda_{b r}=L_{r} i_{b r}+M i_{a s} \cos \left(-\left(\frac{\pi}{2}+\theta\right)\right)+M i_{b s} \cos (-\theta) \\
& \lambda_{b r}=L_{r} i_{b r}-M i_{a s} \sin (\theta)+M i_{b s} \cos (\theta)
\end{aligned}
$$

TWO-PHASE ROTATING MACHINE

The flux linkages in matrix form:

$$
\left[\begin{array}{l}
\lambda_{a s} \\
\lambda_{b s} \\
\lambda_{a r} \\
\lambda_{b r}
\end{array}\right]=\left[\begin{array}{cccc}
L_{s} & 0 & M \cos (\theta) & -M \sin (\theta) \\
0 & L_{s} & M \sin (\theta) & M \cos (\theta) \\
M \cos (\theta) & M \sin (\theta) & L_{r} & 0 \\
-M \sin (\theta) & M \cos (\theta) & 0 & L_{r}
\end{array}\right]\left[\begin{array}{c}
i_{a s} \\
i_{b s} \\
i_{a r} \\
i_{b r}
\end{array}\right]
$$

Note: the inductance matrix is symmetric

TWO-PHASE ROTATING MACHINE

We can derive co-energy as:

$$
\begin{aligned}
W_{m}^{\prime}= & \frac{1}{2} L_{s} i_{a s}^{2}+\frac{1}{2} L_{s} i_{b s}^{2}+\frac{1}{2} L_{r} i_{a r}^{2}+\frac{1}{2} L_{r} i_{b r}^{2} \\
& +M \cos (\theta) i_{a s} i_{a r}+M \sin (\theta) i_{b s} i_{a r} \\
& -M \sin (\theta) i_{a s} i_{b r}+M \cos (\theta) i_{b s} i_{b r}
\end{aligned}
$$

The torque can be expressed as:
$T^{e}=\frac{\partial W_{m}{ }^{\prime}}{\partial \theta}=M\left[-\sin (\theta) i_{a s} i_{a r}+\cos (\theta) i_{b s} i_{a r}-\cos (\theta) i_{a s} i_{b r}-\sin (\theta) i_{b s} i_{b r}\right]$

AVERAGE POWER CONDITIONS

The mechanical output power for sinusoidal excitation is
then:

$$
\begin{aligned}
& i_{a s}=I_{s} \cos \left(\omega_{s} t\right), \quad i_{b s}=I_{s} \sin \left(\omega_{s} t\right) \\
& i_{a r}=I_{r} \cos \left(\omega_{r} t\right), \quad i_{b r}=I_{r} \sin \left(\omega_{r} t\right) \\
& \theta=\omega_{m} t+\gamma \\
& P_{m}=T^{e} \frac{d \theta}{d t}=T^{e} \omega_{m}=-\omega_{m} I_{s} I_{r} M \sin \left[\left(\omega_{m}-\omega_{s}+\omega_{r}\right) t+\gamma\right]
\end{aligned}
$$

TWO-PHASE ROTATING MACHINE

There is average power transfer if the coefficient of t is
zero, i.e., $\quad \omega_{m}=\omega_{s}-\omega_{r}$. This is the frequency condition.
Notice that according to the power equation, there is no
pulsating torque as in the single-phase machine!.
If we place the coils 90° apart and the currents are
90° out of phase then:

$$
P_{m}=-\omega_{m} I_{s} I_{r} M \sin (\gamma)
$$

CONCEPT OF ROTATING FIELD

Consider the two-phase machine with only the stator excited by current sources

CONCEPT OF ROTATING FIELD

The current in each winding produces a flux density that is
maximum along its magnetic axis at some time instant and
varies sinusoidally between the positive and negative directions of the axis.

CONCEPT OF ROTATING FIELD

(a) At $t=0$, the flux is maximum along the positive stator a axis direction.
(b) At $t=\frac{\pi}{2 \omega_{s}}$ seconds, it is maximum along the positive stator b axis direction.
(c) At $t=\frac{\pi}{\omega_{s}}$ seconds, it is maximum along the negative stator a axis direction.
(d) At $t=\frac{3 \pi}{2 \omega_{s}}$ seconds, it is maximum along the negative b stator axis direction.

CONCEPT OF ROTATING FIELD

Spatial distribution of flux B_{r} at different time instants

CONCEPT OF ROTATING FIELD

At an arbitrary time instant t, the magnetic field in the air gap at angle ψ is the sum of $B_{r m} \sin \omega_{s} t \sin \psi \quad$ and

$$
B_{r n} \cos \omega_{s} t \cos \psi, \text { i.e., }
$$

$$
\begin{aligned}
B_{r}(t, \psi) & =B_{r m}\left[\cos \omega_{s} t \cos \psi+\sin \omega_{s} t \sin \psi\right] \\
& =B_{m m}\left(\cos \left(\omega_{s} t-\psi\right)\right)
\end{aligned}
$$

This is the magnetic field rotating at speed ω_{s}

CONCEPT OF ROTATING FIELD

- Rotor currents excited with frequency ω_{r} also create a rotating field similarly. This rotating field rotates at an angular velocity of ω_{r}.
- The two fields are fixed in space relative to each other.
- The rotor is running at a constant angular velocity. To do
- this a constant mechanical speed given by $\omega_{m}=\omega_{s}-\omega_{r}$
- is required.

PER-PHASE EQUIVALENT CIRCUIT

- Now we look at voltages with $\theta=\omega_{m} t+\gamma$

$$
\begin{aligned}
v_{a s} & =i_{a s} R_{s}+\frac{d \lambda_{a s}}{d t} \\
\lambda_{s} & =L_{a s} i_{a s}+M \cos \theta i_{a r}-M \sin \theta i_{b r}
\end{aligned}
$$

$$
v_{a s}=i_{a s} R_{s}+\frac{d}{d t}\left[L_{a s} i_{a s}+M \cos \left(\omega_{m} t+\gamma\right) i_{a r}-M \sin \left(\omega_{m} t+\gamma\right) i_{b r}\right]
$$

$$
i_{a s}=I_{s} \cos \omega_{s} t
$$

$$
i_{a r}=I_{r} \cos \omega_{r} t
$$

$$
i_{b r}=I_{r} \cos \omega_{r} t
$$

PER-PHASE EQUIVALENT CIRCUIT

$\nu_{a s}=R_{s} I_{s} \cos \omega_{s} t-\omega_{s} L_{s} I_{s} \sin \omega_{s} t$
$\left.\left.+\frac{d}{d t}\left[M \cos \left(\omega_{m} t+\gamma\right) I_{r} \cos \omega_{r} t\right)-M \sin \left(\omega_{m} t+\gamma\right) I_{r} \sin \omega_{r} t\right)\right]$
$v_{a s}=R_{s} I_{s} \cos \omega_{s} t-\omega_{s} L_{s} I_{s} \sin \omega_{s} t+\frac{d}{d t}\left[M I_{r} \cos \left(\left(\omega_{m}+\omega_{r}\right) t+\gamma\right)\right]$
$=R_{s} I_{s} \cos \omega_{s} t-\omega_{s} L_{s} I_{s} \sin \omega_{s} t-\left(\omega_{m}+\omega_{r}\right) M I_{r} \sin \left(\left(\omega_{m}+\omega_{r}\right) t+\gamma\right)$
Require $\quad \omega_{s}=\omega_{m}+\omega_{r}$
$v_{a s}=R_{s} I_{s} \cos \omega_{s} t-\omega_{s} L_{s} I_{s} \sin \omega_{s} t-\omega_{s} M I_{r} \sin \left(\omega_{s} t+\gamma\right)$
$V_{s} \cos \left(\omega_{s} t+\alpha\right)=R_{s} I_{s} \cos \omega_{s} t-\omega_{s} L_{s} I_{s} \sin \omega_{s} t-\omega_{s} M I_{r} \sin \left(\omega_{s} t+\gamma\right)$

PER-PHASE EQUIVALENT CIRCUIT

or, $\quad \frac{V_{s}}{\sqrt{2}} \angle \alpha=R_{s} I_{s} \angle 0+j \omega_{s} L_{s} \frac{I_{s}}{\sqrt{2}} \angle 0+j \omega_{s} M \frac{I_{r}}{\sqrt{2}} \angle \gamma$
If $I_{r}=\mathrm{dc}, \omega_{r}=0$, and $\omega_{s}=\omega_{m}$, then we have a synchronous machine.

$$
\frac{V_{s}}{\sqrt{2}} \angle \alpha=R_{s} I_{s} \angle 0+j \omega_{s} L_{s} \frac{I_{s}}{\sqrt{2}} \angle 0+j \omega_{s} M \frac{I_{r}}{\sqrt{2}} \angle \gamma, \underbrace{}_{R_{j}}
$$

