ECE 330
 POWER CIRCUITS AND ELECTROMECHANICS

LECTURE 2 CONSERVATION OF COMPLEX POWER

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter Sauer's ECE 330 lecture notes. Some slides are taken from Ali Bazi's presentations

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.

SIMPLE NETWORK

- Complex power is conserved in a network.
- This can be proved in this simple network.
- Given the current direction,

$\bar{S}_{\text {in }, 1}=-\bar{V} \bar{I}^{*}$ and $\bar{S}_{\text {out }, 1}=\bar{S}_{\text {in }, 2}=\bar{V} \bar{I}^{*}$ and $\bar{S}_{\text {out }, 2}=-\bar{V} \bar{I}^{*}$
Thus, $\quad \bar{S}_{i n, 1}=\bar{S}_{\text {out }, 2}, \bar{S}_{\text {in }, 1}+\bar{S}_{\text {out }, 1}=0$, and $\bar{S}_{\text {in }, 2}+\bar{S}_{\text {out }, 2}=0$.
- Electric charge is conserved. All the charge that passes any point of the circuit in a given time interval must pass any other point in the same time interval.

SERIES AND PARALLEL NETWORKS

- Series network:

$$
\begin{aligned}
\bar{S}_{i n} & =\bar{V}_{1} \bar{I}^{*}+\bar{V}_{2} \bar{I}^{*}+\bar{V}_{3} \bar{I}^{*}+\ldots+\bar{V}_{\bar{I}} \bar{T}^{*} \\
& \bar{S}_{1}+\bar{S}_{2}+\bar{S}_{3}+\ldots+\bar{S}_{N}
\end{aligned}
$$

- Parallel network

$$
\begin{aligned}
\bar{S}_{i n} & =\bar{V} \bar{I}_{1}^{*}+\bar{V} \bar{I}_{2}^{*}+\bar{V} \bar{I}_{3}^{*}+\ldots+\bar{V} \bar{I}_{N}^{*} \\
& =\bar{S}_{1}+\bar{S}_{2}+\bar{S}_{3}+\ldots+\bar{S}_{N}
\end{aligned}
$$

The total complex power is the sum of the complex powers in individual elements (power is conserved).

POWER TRIANGLE

- The complex power can be represented in a power triangle where $\bar{s}=P+j Q=S \angle\left(\theta_{v}-\theta_{i}\right)=S \angle \theta$

$$
\begin{aligned}
& \bar{V}=120 \angle 25^{\circ} \mathrm{V}, \bar{I}=5 \angle-15^{\circ} \mathrm{A} \\
& \bar{S}=\bar{V} \bar{I}^{*}=600 \angle 40^{\circ} \mathrm{VA} \\
& \bar{S}=459.6+j 385.7 \mathrm{VA}
\end{aligned}
$$

$S=\underset{459.6 \mathrm{~W}}{\angle 40^{\circ}} 385 \mathrm{VA}$

POWER TRIANGLE

- The P.F. in this example is $\cos \left(40^{\circ}\right)$. How can we make it unity?
- The power triangle is very useful in such an application.
- How can we make the P.F. $=0.9$ lagging?
$\theta=\cos ^{-1}(0.9)=25.84^{\circ}, S=\frac{459.6}{0.9}=510.7 \mathrm{VA}$
$Q_{\text {new }}=510.7 \sin \left(25.84^{\circ}\right)=222.6 \mathrm{VAR}$
$Q_{\text {added }}=Q_{\text {new }}-Q=-163.1 \mathrm{VAR}$
Check: $\cos \left(\tan ^{-1}\left(Q_{\text {new }} / P\right)\right)=0.899$

$$
S=510.7 \mathrm{VA}
$$

LOAD

- The load can be represented using any of these combinations:

$$
\begin{aligned}
& S(V A) \text { and } P . F . \\
& S(V A) \text { and } P(W) \\
& S(V A) \text { and } Q(V A R) \\
& P(W) \text { and } Q(V A R) \\
& \bar{V}(V) \text { and } \bar{I}(A) \\
& \bar{V}(V) \text { and } \bar{Z}(\Omega) \\
& \bar{I}(A) \text { and } \bar{Z}(\Omega)
\end{aligned}
$$

LOAD

- Since there is need for a reference in phasor analysis, we take $\bar{V}=V \angle 0^{\circ}$. The power factor $P F=\cos \theta$ and $\theta= \pm \cos ^{-1}(\mathrm{PF})(+$ for lag and - for lead $)$.

The current is given by $\bar{I}=I \angle-\theta$.
If \bar{V} and \bar{I} are specified it is equivalent to specifying
V, I, and the PF.

LOAD

Another way is to specify $V, P F$, and P. Then

$$
\theta= \pm \cos ^{-1}(P F)(+ \text { for lag and }- \text { for lead })
$$

$P=V I \cos \theta$
$I=\frac{P}{V \cos \theta}$
$Q=V I \sin \theta$

$$
\bar{S}=P+j Q
$$

