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ECE 330 

POWER CIRCUITS AND ELECTROMECHANICS 

 

 

LECTURE 5 

PER-PHASE CIRCUITS AND MAGNETICS (1) 
 

 

 

 

 

 

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter 

Sauer’s ECE 330 lecture notes. Some slides are taken from Ali Bazi’s presentations 

 

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook. 
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PER-PHASE EQUIVALENTS 

 

 

 

 

 

 

 

 
Source: blogspot.com 
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PER-PHASE EQUIVALENTS 

In balanced three phase circuits, it is preferable to  

work with per-phase equivalents and then convert the  

variables to three-phase quantities. 
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PER-PHASE EQUIVALENTS 

Δ-Y CONVERSION 

• Per-Phase equivalent circuits are very convenient for 

analyzing three-phase circuits.  

• For a Y-source the load could be either Y or Δ. 

• The load seen between two phases, e.g., a and b, can 

be expressed as: 
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PER-PHASE EQUIVALENTS 

• The per-phase circuits can then be shown as follows: 
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PER-PHASE EQUIVALENTS 

• For either load, the voltage and load can be  

    transformed to a Y-per-phase circuit, or Δ-per-phase  

    circuit, and the S should be the same.  

• Example:                             ,  
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EXAMPLE 2.17 

The following two three-phase loads are connected in  

parallel across a three-phase 480 V wye-connected  

supply. 
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EXAMPLE 2.17 

• Load 1: 24 kW at 0.8 PF lag (wye-connected)  

•  Load 2: 30 kVA at 0.8 PF lead (delta-connected) 

Find the line currents        and       for each of the two  

loads, total complex power      and total line current.     

Take           as reference. 

Triangle method: 
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EXAMPLE 2.17 
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EXAMPLE 2.17 

Line current: 
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EXAMPLE 2.17 
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Per-phase equivalent method 
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EXAMPLE 2.17 

Phase-to-neutral voltage is  
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MAGNETIC CIRCUITS 

• Maxwell’s Equations: 

– Ampere’s Law: 

The magnetic field in any closed circuit is proportional to the  

electric current flowing through the loop. 

– Faraday’s Law: 

The line integral of the electric field around a closed  loop is  

equal to the negative of the rate of change of the magnetic flux  

through the area enclosed by the loop. .  
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MAGNETIC CIRCUITS 

– Conservation of Charge: 

– Gauss’s Law:  

 

The net magnetic flux out of any closed surface is zero. 

(for a magnetic dipole ,in any closed surface the magnetic flux  

inward toward the south pole will equal  

the flux outward from the north pole).    
 

 

                                                                                                                    Source:study.com 
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MAGNETIC CIRCUITS 

• What do these symbols mean?  

– Integral over a closed contour C: 

– Surface S define by C: 

– Integral over a closed surface S: 

– Length of the contour C: 

– H is the magnetic field intensity (A.turns/m) 

– B is the magnetic flux density (Tesla or Wb/m2) 

– E is the electric field (V/m) 

– J is the current density (A/m2) 

– n is the normal vector to S.      
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STATIC MAGNETIC CIRCUIT 

In static magnetic circuits, there are no moving  

members. The most important device in this category  

is the transformer. We use Ampere’s current law  

(ACL) and Gauss’s law (GL) for magnetic fields to  

derive useful flux-current terminal relations. The  

analysis is helpful in the design of inductors, and study  

of transformers.  
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MAGNETIC CIRCUIT - TOROID 

• Current flowing in a conductor produces a magnetic 

field. 

• Voltage produces an electric field. 

• Common example: 
 

 

 

  

• Source: electronicshub.org 
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MAGNETIC CIRCUIT - TOROID 

• Applying Ampere’s law                   we get                  

where     is the mean length of the core.       

      can be approximated as 2π(ro+r1)/2.  

• Assuming a linear relationship between B and H  

where            and  μ  is the permeability (H/m). 

•μ  = μr  μo where μr is the relative permeability and μo  

is the permeability of free space. μo= 4π x10-7 H/m. 
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MAGNETIC CIRCUIT - TOROID 

• The flux density in the core is  

 

• Since B is the flux density (Wb/m2), then the flux is 

 

• Define the magnetomotive force (mmf) as 

• Define the reluctance to be  
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Magnetic Circuit Equivalent 

• Then, 

• The permeance  is   

 

It has similarity to a resistive  

circuit with the following equivalences 
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MAGNETIC VS. ELECTRIC CIRCUITS 

• The following analogies hold: 

• Differences: 

–Leakage. 

–μ  is not perfectly constant. 

–Saturation 

• KVL and KCL analogous to total MMFs across a  

    loop add up to zero, and total flux entering or  

    leaving a node is zero.  
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INDUCTANCE 

• Faraday’s law can be written as: 

 

• E  is (V/m) and      is (m) => left side is voltage. 

 

• Define the flux linkage as 

 

• Then, 

 

• Define the inductance                 , then    
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MAGNETIC CIRCUIT – TOROID WITH AIR GAP 

• Some magnetics have air gaps that store energy.  

• Back to the Toroid example but with air gap.  

• The gap length is       and its permeability is 

 

 

 

                                                              

                                                                                                                           Source: softsolder.com 
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MAGNETIC CIRCUIT – TOROID WITH AIR GAP 

• Therefore,                             and   

 

• Assuming all flux passes through the air gap,  

 

 

• Then,  
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FRINGING 

• Fringing occurs when the flux jumps around the  

    air gap to join the other side of the core.  

 

• Fringing can be simply modeled by having Ag >Ac 

• Two methods to account for this: 

- Empirical approximation 

-     is given as percentage times  
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EXAMPLE 

 

 

• Find the flux. 
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