ECE 333 Green Electric Energy - Quiz 6

Tuesday, November 28, 2017

Duration: 20 minutes

Name:	last 4 digits of your UIN:
Closed book, closed notes, cell phones are not allowed. Show all you work and always indicate the units, as appropriate.	
a site in Durham with a 0.8-sun and 32 °C ambi	stem power output of $p_{DC,stc} = 3 \ kWp$, installed in ent temperature. The PV system has a $^{\circ}C$. Take the derate factor χ equal to the default
a. [35 points] Calculate χ', (temperature-r	related derate factor).
b. [30 points] Calculate the AC power del	ivered by the PV system.
Problem 2 [35 points]: Calculate the solar altitude angle at solar noon of 1=0.716 radians.	on a clear January 9 in Istanbul at latitude

Formulae:

The apparent solar irradiation is given by the formula: $a|_d = 1{,}160 + 75 x \sin \left(2\pi \frac{(d-275)}{365}\right)$].

The solar declination angle is given by the formula: $\delta|_d = 0.41 \ x \sin \left(2\pi \frac{(d-81)}{365}\right)$].

The air mass ratio is given by the formula:

$$r(h)|_d = \sqrt{[708\sin(\beta(0)|_d)]^2 + 1,417} - 708\sin(\beta(0)|_d).$$

The clear-sky direct beam radiation is given by the formula: $i_b(h)|_d = a|_d e^{-k|_d r(h)|_d}$.

The solar altitude angle at solar noon is given by the formula: $\beta(0)|_d = \frac{\pi}{2} - l + \delta|_d$.

The optical depth is given by the formula: $k|_d = 0.174 + 0.035 \sin \left(2\pi \frac{(d-100)}{365}\right)$].