ECE 333 Green Electric Energy - Quiz 6

Tuesday, November 28, 2017
Duration: $\mathbf{2 0}$ minutes

Name: \qquad last 4 digits of your UIN: \qquad

Closed book, closed notes, cell phones are not allowed.
Show all you work and always indicate the units, as appropriate.

Problem 1 [65 points]:

Consider a $P V$ system with stc rated $D C P V$ system power output of $\mathrm{p}_{\mathrm{DC}, \text { stc }}=3 \mathrm{kWp}$, installed in a site in Durham with a $0.8-$ sun and $32^{\circ} \mathrm{C}$ ambient temperature. The $P V$ system has a temperature coefficient of $-0.6 \% /{ }^{\circ} \mathrm{C}$, and $\tau_{\mathrm{n}}=45^{\circ} \mathrm{C}$. Take the derate factor χ equal to the default derate factor in PVWATTS, $\chi=0.77$.
a. [35 points] Calculate χ^{\prime}, (temperature-related derate factor).
b. [30 points] Calculate the $A C$ power delivered by the $P V$ system.

Problem 2 [35 points]:

Calculate the solar altitude angle at solar noon on a clear January 9 in Istanbul at latitude $1=0.716$ radians.

Formulae:

The apparent solar irradiation is given by the formula: $\left.\left.a\right|_{d}=1,160+75 x \sin \left(2 \pi \frac{(d-275)}{365}\right)\right]$.
The solar declination angle is given by the formula: $\left.\left.\delta\right|_{d}=0.41 x \sin \left(2 \pi \frac{(d-81)}{365}\right)\right]$.
The air mass ratio is given by the formula:
$\left.r(h)\right|_{d}=\sqrt{\left[708 \sin \left(\left.\beta(0)\right|_{d}\right)\right]^{2}+1,417}-708 \sin \left(\left.\beta(0)\right|_{d}\right)$.
The clear-sky direct beam radiation is given by the formula: $\left.i_{b}(h)\right|_{d}=\left.a\right|_{d} e^{-\left.\left.k\right|_{d} r(h)\right|_{d}}$.
The solar altitude angle at solar noon is given by the formula: $\left.\beta(0)\right|_{d}=\frac{\pi}{2}-l+\left.\delta\right|_{d}$.
The optical depth is given by the formula: $\left.\left.k\right|_{d}=0.174+0.035 \sin \left(2 \pi \frac{(d-100)}{365}\right)\right]$.

