ECE 333 Green Electric Energy - Quiz 6 Solutions

Tuesday, November 28, 2017

Duration: 20 minutes

Name:	last 4 digits of your UIN:

Closed book, closed notes, cell phones are not allowed. Show all you work and always indicate the units, as appropriate.

Problem 1 [65 points]:

Consider a PV system with stc rated DC PV system power output of $\mathbf{p}_{DC,stc} = 3$ kWp, installed in a site in Durham with a 0.8–sun and 32 $^{\circ}C$ ambient temperature. The PV system has a temperature coefficient of -0.6%/ $^{\circ}C$, and τ_n =45 $^{\circ}C$. Take the derate factor χ equal to the default derate factor in PVWATTS, $\chi = 0.77$.

a. [35 points] Calculate χ' , (temperature-related derate factor).

Solution

$$\tau_{cell} = \tau_a + \left(\frac{\tau_{n-20}}{0.8}\right) (insolation) = 32 + \left(\frac{45-20}{0.8}\right) (0.8) = 57 \, ^{\circ}C.$$

$$\chi' = \chi \left[1 + z(\tau_{cell} - 25)\right] = (0.77)[1 - (0.006)(57 - 25)]$$

$$\chi' = (0.77)[1 - (0.006)(32)] = (0.77)(0.808) = 0.622$$

b. [30 points] Calculate the AC power delivered by the PV system. Solution:

$$p_{AC} = (p_{DC,stc})(\chi') = (3)(0.622) = 1.866 \, kW$$

Problem 2 [35 points]:

Calculate the solar altitude angle at solar noon on a clear January 9 in Istanbul at latitude l=0.716 radians.

Solution:

$$\delta|_d = 0.41 x \sin(2\pi \frac{(d-81)}{365})$$
. For d=9,

$$\delta|_{9} = 0.41 x \sin\left(2\pi \frac{(9-81)}{365}\right) = 0.41 x \sin\left(2\pi \frac{(-72)}{365}\right) = 0.41 x \sin(-1.2394)$$

$$\delta|_{9} = 0.41 x (-0.9456) = -0.3877$$
 radians

$$\beta(0)|_{d} = \frac{\pi}{2} - l + \delta|_{d}$$
. For $d = 9$ and $l = 0.716$ radians

$$\beta(0)|_{9} = \frac{\pi}{2} - 0.716 + (-0.3877) = 0.467 \ radians$$

Formulae:

The apparent solar irradiation is given by the formula: $a|_d = 1{,}160 + 75 x \sin \left(2\pi \frac{(d-275)}{365}\right)$].

The solar declination angle is given by the formula: $\delta|_d = 0.41 \, x \sin \left(2\pi \frac{(d-81)}{365}\right)$].

The air mass ratio is given by the formula:

$$r(h)|_d = \sqrt{[708\sin(\beta(0)|_d)]^2 + 1,417} - 708\sin(\beta(0)|_d).$$

The clear-sky direct beam radiation is given by the formula: $i_b(h)|_d = a|_d e^{-k|_d r(h)|_d}$.

The solar altitude angle at solar noon is given by the formula: $\beta(0)|_d = \frac{\pi}{2} - l + \delta|_d$.

The optical depth is given by the formula: $k|_d = 0.174 + 0.035 \sin \left(2\pi \frac{(d-100)}{365}\right)$].