ECE 333 - Green Electric Energy

10. Energy Economics Concepts

George Gross

Department of Electrical and Computer Engineering

 University of Illinois at Urbana-Champaign
ENERGY ECONOMICS CONCEPTS

\square The economic evaluation of a renewable energy resource requires a meaningful quantification of the cost elements

O fixed costs
O variable costs
\square We use engineering economics notions for this purpose since they provide the means to compare on a consistent basis

O two different projects; or,
O the costs with and without a given project
ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TIME VALUE OF MONEY

\square Basic underlying notion: a dollar today is not the same as a dollar in a year
\square We represent the time value of money by the standard approach of discounted cash flows
\square The notation is

$$
\begin{aligned}
P & =\text { principal } \\
i & =\text { interest value }
\end{aligned}
$$

\square We use the convention that every payment occurs at the end of a period

SIMPLE EXAMPLE

Ioan P for 1 year
repay $P+i P=P(1+i)$ at the end of 1 year
year $0 \quad P$
year $1 \quad P(1+i)$
loan P for n years

year 1
$(1+i) P$
repay/reborrow
year 2
$(1+i)^{2} P \quad$ repay/reborrow
year 3
$(1+i)^{3} P$
repay/reborrow
year n
$(1+i)^{n} P \quad$ repay

ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COMPOUND INTEREST

end of period	amount owed	interest for next period	amount owed at the beginning of the next period
0	P	$P i$	$P+P i=P(1+i)$
1	$P(1+i)$	$P(1+i) i$	$P(1+i)+P(1+i) i=P(1+i)^{2}$
2	$P(1+i)^{2}$	$P(1+i)^{2} i$	$P(1+i)^{2}+P(1+i)^{2} i=P(1+i)^{3}$
3	$P(1+i)^{3}$	$P(1+i)^{3} i$	$P(1+i)^{3}+P(1+i)^{3} i=P(1+i)^{4}$
\vdots	\vdots		$P(1+i)^{n-1} i$
$n-1$	$P(1+i)^{n-1}$	$P(1+i)^{n}$	
n			

the value in the last column at the e.o.p. $(k-1)$ provides the amount in the first column for the period k
ECE 333 © 2002 - $\mathbf{2 0 1 7}$ George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TERMINOLOGY

end of n periods

TERMINOLOGY

We call $(1+i)^{n}$ the single payment compound amount factor
\square We define

$$
\beta \triangleq(1+i)^{-1}
$$

\square Then,

$$
\beta^{n}=(1+i)^{-n}
$$

is the single payment present worth factor
$\square F$ denotes the future worth; P denotes the present
worth or present value at interest i of a future sum F
ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE 1

\square Consider a loan of $\$ 4,000$ at 8% interest to be

 repaid in two installmentsO \$1,000 and interest at the e.o.y. 1
O \$3,000 and interest at the e.o.y. 4

EXAMPLE 1

\square The cash flows are

$$
\begin{aligned}
& \text { O e.o.y. 1: } 1,000+4,000(.08)=\$ 1,320.00 \\
& \text { O e.o.y. 4: } \quad 3,000(1+.08)^{3}=\$ 3,779.14
\end{aligned}
$$

\square Note that the Ioan is made in year 0 present \$, but
the repayments are in year 1 and year 4 future \$

EXAMPLE 2

\square Given

$$
P=\$ 1,000 \quad \text { and } \quad i=.12
$$

then

$$
P(1+i)^{5}=\$ 1,000(1+.12)^{5}=\$ 1,762.34=F
$$

\square We say that with the cost of money of $12 \%, P$ and F are equivalent in the sense that $\$ 1,000$ today has
the same worth as $\$ 1,762.34$ in 5 years

EXAMPLE 3

Consider an investment that returns

\$ 1,000 at the e.o.y. 1
$\$ 2,000$ at the e.o.y. 2 rate at which
$i=10 \%$ money can be freely lent or
\square We evaluate P borrowed

$$
\begin{aligned}
P & =\$ 1,000 \underbrace{(1+.1)^{-1}}_{\beta}+\$ 2,000 \underbrace{(1+.1)^{-2}}_{\beta^{2}} \\
& =\$ 909.9+\$ 1,652.09 \\
& =\$ 2,561.98
\end{aligned}
$$

EXAMPLE 3

We review this example with a cash-flow diagram

\$ 2,561.98

EXAMPLE 3

I Next, suppose that this investment requires

 \$ 2,400 now and so at 10% we say that the investment has a net present value given by$$
N P V=\$ 2,561.98-\$ 2,400=\$ 161.98
$$

\$ 2,400.00

CASH FLOWS

\square A cash-flow is basically a transfer of an amount A_{t}
from one entity to another at the e.o.p. t
\square We consider the cash-flow set $\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{n}\right\}$
\square This set corresponds to the set of the transfers at
the end of the periods in $\{0,1,2, \ldots, n\}$

CASH FLOWS

\square We associate the transfer A_{t} at the e.o.p. t,
$t=0,1,2, \ldots, n$
\square The convention for cash flows is

$$
\begin{aligned}
& + \text { inflow } \\
& \text { - outflow }
\end{aligned}
$$

\square Each cash flow requires the specification of:
O amount;
O time; and,
O its sign

CASH FLOWS: FUTURE WORTH

\square Given a cash-flow set $\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{n}\right\}$ we define the future worth F_{n} of the cash flow set at the e.o.y. n as

CASH FLOWS : FUTURE WORTH

Note that each cash flow A_{t} in the $(n+1)$ period

 set contributes differently to $\boldsymbol{F}_{\boldsymbol{n}}$:$$
\begin{array}{ccc}
A_{0} & \rightarrow & A_{0}(1+i)^{n} \\
A_{1} & \rightarrow & A_{1}(1+i)^{n-1} \\
A_{2} & \rightarrow & A_{2}(1+i)^{n-2} \\
\vdots & & \vdots \\
A_{t} & \rightarrow & A_{t}(1+i)^{n-t} \\
\vdots & & \vdots \\
A_{n} & \rightarrow & A_{n}
\end{array}
$$

CASH FLOWS: PRESENT WORTH

\square We define the present worth P of the cash-flow

set as

$$
P=\sum_{t=0}^{n} A_{t} \beta^{t}=\sum_{t=0}^{n} A_{t}(1+i)^{-t}
$$

\square Note that

$$
\begin{aligned}
P & =\sum_{t=0}^{n} A_{t}(1+i)^{-t} \\
& =\sum_{t=0}^{n} A_{t}(1+i)^{-t} \underbrace{(1+i)^{n}(1+i)^{-n}}_{1}
\end{aligned}
$$

CASH FLOWS

$$
\begin{aligned}
& =\underbrace{(1+i)^{-n}}_{\beta^{n}} \underbrace{\sum_{t=0}^{n} A t(1+i)^{n-t}}_{F_{n}} \\
& =\beta^{n} F_{n}
\end{aligned}
$$

or, equivalently,

$$
F_{n}=(1+i)^{n} P
$$

UNIFORM CASH-FLOW SET

\square Consider the cash - flow set $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ with

$$
A_{t}=A \quad t=1,2, \ldots, n
$$

\square Such a set is called an equal payment cash flow set
\square We compute the present worth at $t=0$
$P=\sum_{t=1}^{n} A_{t} \beta^{t}=A \sum_{t=1}^{n} \beta^{t}=A \beta\left[1+\beta+\beta^{2}+\ldots+\beta^{n-1}\right]$

UNIFORM CASH-FLOW SET

\square Now, for $0<\beta<1$, we have the identity

$$
\sum_{j=0}^{\infty} \beta^{j}=\frac{1}{1-\beta}
$$

\square It follows that

$$
\sum_{j=0}^{\infty} \beta^{j}
$$

$$
\begin{aligned}
1+\beta+\ldots+\beta^{n-1} & =\sum_{j=0}^{\infty} \beta^{j}-\beta^{n}[\overbrace{1+\beta+\beta^{2}+\ldots+\beta^{n-1}+\ldots}] \\
& =\left(1-\beta^{n}\right) \sum_{j=0}^{\infty} \beta^{j}
\end{aligned}
$$

UNIFORM CASH-FLOW SET

$$
=\frac{1-\beta^{n}}{1-\beta}
$$

Therefore

$$
P=A \beta \frac{1-\beta^{n}}{1-\beta}
$$

- But

$$
\beta=(1+d)^{-1}
$$

where d is the interest or discount rate and so

UNIFORM CASH-FLOW SET

$$
1-\beta=1-\frac{1}{1+d}=\frac{d}{1+d}=\beta d
$$

- We write

$$
\begin{gathered}
\qquad P=A \frac{1-\beta^{n}}{d} \\
\text { and we call } \frac{1-\beta^{n}}{d} \text { the equal payment series }
\end{gathered}
$$

present worth factor
ECE $333 \subset 2002$ - $\mathbf{2 0 1 7}$ George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EQUIVALENCE

\square We consider two cash - flow sets

$\left\{A_{t}^{a}: t=0,1,2, \ldots, n\right\}$ and $\left\{A_{t}^{b}: t=0,1,2, \ldots, n\right\}$
under a given discount rate d
\square We say $\left\{A_{t}^{a}\right\}$ and $\left\{A_{t}^{b}\right\}$ are equivalent cash-flow
sets if and only if

$$
F_{m} \text { of }\left\{A_{t}^{a}\right\}=F_{m} \text { of }\left\{A_{t}^{b}\right\} \text { for every value of } m
$$

EQUIVALENCE EXAMPLE

\square Consider the two cash-flow sets under $d=7 \%$

EQUIVALENCE

We compute

$$
P^{a}=2,000 \sum_{t=3}^{7} \beta^{t}=7,162.55
$$

and

$$
P^{b}=8,200.40 \quad \beta^{2}=7,162.55
$$

\square Therefore, $\left\{A_{t}^{a}\right\}$ and $\left\{A_{t}^{b}\right\}$ are equivalent cash
flow sets under $d=7 \%$

EXAMPLE

\square Consider the cash-flow set illustrated below

\square We compute F_{8} at $t=8$ for $d=6 \%$

EXAMPLE

$$
\begin{aligned}
F_{8}= & 300(1+.06)^{7}-300(1+.06)^{5}+ \\
& 200(1+.06)^{4}+400(1+.06)^{2}+200 \\
= & \$ 951.56
\end{aligned}
$$

We also compute P

EXAMPLE

$$
\begin{aligned}
P= & 300(1+.06)^{-1}-300(1+.06)^{-3}+ \\
& 200(1+.06)^{-4}+400(1+.06)^{-6}+200(1+.06)^{-8} \\
= & \$ 597.04
\end{aligned}
$$

We check that at $d=6 \%$

$$
F_{8}=597.04(1+.06)^{8}=\$ 951.56
$$

DISCOUNT RATE

\square The interest rate i is, typically, referred to as the discount rate and is denoted by d
\square In the conversion of the future amount F to the present worth P, we view the discount rate as the interest rate that may be earned from the best investment alternative
\square A postulated savings of $\$ 10,000$ in a project in 5 years is worth at present

$$
P=F_{5} \beta^{5}=10,000(1+d)^{-5}
$$

ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DISCOUNT RATE

\square For $d=0.1$

$$
P=\$ 6,201
$$

while for $d=0.2$

$$
P=\$ 4,019
$$

\square In general, for a specified future worth, the lower the
discount factor, the higher the present worth is

DISCOUNT RATE

\square We may state this notion slightly differently; the
lower the discount factor, the more valuable a
future payoff becomes
\square The present worth of a set of costs under a given
discount rate is called the life-cycle costs, an
important term in economic assessment studies

EXAMPLE

\square We consider the purchase of two $100-h p$ motors a and b - to be used over a 20-year period; the given discount rate is 10%
\square The relative merits of a and b are

motor	costs (\$)	load (kW)
a	2,400	79.0
b	2,900	77.5

ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE

\square The motor is used 1,600 hours per year and
electricity costs are constant at $0.08 \$ / k W h$

We evaluate yearly energy costs for the two motors

$$
\begin{aligned}
A_{t}^{a}=(79.0 k W)(1600 h)(.08 \$ / k W h) & =\$ 10,112 \\
t & =1,2, \ldots, 20 \\
A_{t}^{b}=(77.5 k W)(1600 h)(.08 \$ / k W h) & =\$ 9,920
\end{aligned}
$$

EXAMPLE

\square We next evaluate the present worth of a and b

$$
\begin{aligned}
P^{a} & =2,400+10,112 \sum_{t=1}^{20}(1.1)^{-t} \\
& =\$ 88,489 \\
P^{b} & =2,900+9,920 \sum_{t=1}^{20}(1.1)^{-t} \\
& =\$ 87,354
\end{aligned}
$$

EXAMPLE

The difference

$$
P^{a}-P^{b}=88,489-87,354=\$ 1,135
$$

Therefore, the purchase of motor b results in the
savings of $\$ 1,135$ under the specified 10%
discount rate due to the use of the smaller load
consumption motor over the 20-year horizon

INFINITE HORIZON CASH - FLOW SETS

\square Consider a uniform cash-flow set with $n \rightarrow \infty$

$$
\left\{A_{t}=A: t=0,1,2, \ldots\right\}
$$

\square Then,

$$
P=A \frac{\left(1-\beta^{n}\right)}{d} \underset{n \rightarrow \infty}{ } A \frac{1}{d}
$$

\square For an infinite horizon uniform cash-flow set

INFINITE HORIZON CASH - FLOW SETS

$$
\frac{A}{P}=d
$$

\square We may view d as the capital recovery factor with the following interpretation:
for an initial investment of P, the amount

$$
d * P=A
$$

is recovered annually in terms of returns
on the investment A

INTERNAL RATE OF RETURN

We consider a cash-flow set

$$
\left\{A_{t}=A: t=0,1,2, \ldots, n\right\}
$$

\square The value of d for which

$$
P-\sum_{t=0}^{n} A_{t} \beta^{t}=0
$$

is called the internal rate of return (IRR)
The $I R R$ is a measure of how quickly we recover an investment, or stated differently, the speed or rate at which the returns recover an investment

EXAMPLE: INTERNAL RATE OF RETURN

\square Consider the following cash-flow set

INTERNAL RATE OF RETURN

\square The present value

$$
P=-30,000+6,000 \frac{1-\beta^{8}}{d}=0
$$

has the solution

$$
d \approx 12 \%
$$

\square The interpretation is that under a 12% discount rate,
the present value of the cash-flow set is 0 and so
$d \approx 12 \%$ is the IRR for the given cash-flow set
\square Consider an infinite horizon simple investment

[Therefore

$$
d=\frac{A}{I} \longleftarrow l \begin{aligned}
& \text { ratio of annual return } \\
& \text { to initial investment } I
\end{aligned}
$$

\square Consider

$$
\begin{aligned}
& I=\$ 1,000 \\
& A=\$ 200
\end{aligned}
$$

and

$$
d=20 \%
$$

We interpret that the returns capture 20% of the investment each year, or equivalently that we have a simple payback period of 5 years

EXAMPLE: EFFICIENT REFRIGERATOR

\square A more efficient refrigerator incurs an investment of additional $\$ 1,000$ but provides $\$ 200$ of energy savings annually
\square For a lifetime of 10 years, the $I R R$ is computed
from the solution of

$$
0=-1,000+200 \frac{1-\beta^{10}}{d}
$$

or

EXAMPLE: EFFICIENT REFRIGERATOR

$$
\frac{1-\beta^{10}}{d}=5
$$

IRR tables show that

$$
\left.\frac{1-\beta^{10}}{d}\right|_{d=15 \%}=5.02
$$

and so the $I R R$ is approximately 15%

INFLATION IMPACTS

\square Inflation is a general increase in the level of prices
in an economy; equivalently, we may view inflation as a general decline in the value of the purchasing power of money

Inflation is measured using prices: different products may have distinct escalation rates
\square Typically, indices such as the CPI - the consumer price index - use a market basket of goods and

INFLATION IMPACTS

services as a proxy for the entire US economy
O reference basis is the year 1967 with the price of $\$ \mathbf{1 0 0}$ for the basket $\longrightarrow L_{0}$
O in the year 1990, the same basket cost
$\$ 374 \longrightarrow L_{21}$
O the average inflation rate \boldsymbol{j} is estimated from

$$
(1+j)^{23}=\frac{374}{100}=3.74
$$

and so

$$
j=(3.74)^{\frac{1}{23}}-1 \approx 0.059
$$

INFLATION RATE

The inflation rate contributes to the overall market interest rate i, sometimes called the combined interest rate
\square We write, using d for i

interest rate
rate
rate
ECE $333 \bigcirc 2002$ - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

INFLATION

We obtain the following identities

$$
d^{\prime}=\frac{d-j}{1+j}
$$

and

$$
j=\frac{d-d^{\prime}}{1+d^{\prime}}
$$

CASH - FLOWS INCORPORATING INFLATION

\square We express the cash flow in then current dollars
in the set $\left\{A_{t}: t=0,1,2, \ldots, n\right\}$
\square The following is synonymous terminology
current \equiv then current \equiv inflated \equiv after inflation
\square An indexed or constant-worth cash-flow is one that
does not explicitly take inflation into account, i.e.,

CASH - FLOWS INCORPORATING INFLATION

whatever amount in current inflated dollars will

buy the same goods and services as in the reference year, typically, the year 0

The following terms are synonymous
constant \equiv indexed \equiv inflation free \equiv before inflation
and we use them interchangeably

CASH - FLOWS INCORPORATING INFLATION

\square We define the set of constant currency flows

$$
\left\{W_{t}: t=0,1,2, \ldots, n\right\}
$$

corresponding to the set

$$
\left\{A_{t}: t=0,1,2, \ldots, n\right\}
$$

with each element A_{t} given in period t currency

CASH - FLOWS INCORPORATING INFLATION

We use the relationship

$$
A_{t}=W_{t}(1+j)^{t}
$$

or equivalently

$$
W_{t}=A_{t}(1+j)^{-t}
$$

with W_{t} expressed in reference year 0 (today's)

dollars

CASH - FLOWS INCORPORATING INFLATION

We have

$$
\begin{aligned}
P & =\sum_{t=0}^{n} A_{t} \beta^{t} \\
& =\sum_{t=0}^{n} W_{t}(i+j)^{t}(i+d)^{-t} \\
& =\sum_{t=0}^{n} W_{t}(i+j)^{t}(i+j)^{-t}\left(i+d^{\prime}\right)^{-t} \\
& =\sum_{n}^{n} W_{t}\left(i+d^{\prime}\right)^{-t}
\end{aligned}
$$

CASH - FLOWS INCORPORATING INFLATION

$\square \quad$ Therefore, the real interest rate d^{\prime} is used to discount the indexed cash flows
\square In summary,
we discount current dollar cash flow at d

we discount indexed dollar cash flow at d^{\prime}

CASH FLOWS INCORPORATING INFLATION

\square Whenever inflation is taken into account, it is con-
venient to carry out the analysis in present worth
rather than future worth or on a cash-flow basis
\square Under inflation $(j>0)$, it follows that a uniform set of cash flows $\left\{A_{t}=A: t=1,2, \ldots, n\right\}$ implies a real decline in the cash flows

EXAMPLE: INFLATION CALCULATIONS

\square We consider an annual inflation rate of $j=4 \%$;
the cost for a piece of equipment is assumed
constant for the next 3 years in terms of today's $\$$

$$
W_{0}=W_{1}=W_{2}=W_{3}=\$ 1,000
$$

\square The corresponding cash flows in current \$ are

$$
\begin{array}{ll}
A_{0} & =\$ 1,000 \\
A_{1}=1,000(1+.04) & =\$ 1,040
\end{array}
$$

EXAMPLE: INFLATION CALCULATIONS

$$
\begin{aligned}
& A_{2}=1,000(1+.04)^{2}=\$ 1,081.60 \\
& A_{3}=1,000(1+.04)^{3}=\$ 1,124.86
\end{aligned}
$$

\square The interpretation of A_{3} is that under 4% inflation,
$\$ 1,125$ in 3 years will have the same value as
$\$ 1,000$ today; it must not be confused with the

present worth calculation

MOTOR ASSESSMENT EXAMPLE

\square For the motor a or b purchase example, we
consider the escalation of electricity at an annual
rate of $\boldsymbol{j}=5 \%$
\square We compute the $N P V$ taking into account the inflation (price escalation of 5%) and $d=10 \%$
\square Then,

$$
d^{\prime}=\frac{d-j}{1+j}=\frac{.10-.05}{1+.05}=\frac{.05}{1.05}=0.04762
$$

MOTOR ASSESSMENT

The savings of $\$ 192$ per year are in constant dollars

$$
P_{\text {savings }}=\sum_{t=1}^{20} W_{t}\left(1+d^{\prime}\right)^{-t} 0.04762
$$

and so

$$
P_{\text {savings }}=\$ 2,442
$$

\square The total savings are

$$
P=-500+P_{\text {savings }}=\$ 1,942
$$

which are larger than those of $\$ 1,135$ without electricity price escalation

EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

\square An energy efficiency retrofit of a commercial site reduces the HVAC load consumption to 0.8 GWh from 2.3 GWh and the peak demand by 0.15 MW
\square Electricity costs are $60 \$ / M W h$ and demand charges are $7,000 \$ /(M W-m o)$ and these prices escalate at an annual rate of $\boldsymbol{j}=\mathbf{5} \%$

The retrofit requires a $\$ \mathbf{5 0 0 , 0 0 0}$ investment today and is planned to have a 15 - year lifetime ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

\square We evaluate the IRR for this project

The annual savings are
energy : (2.3-0.8)GWh $(60 \$ / M W h)=\$ 90,000$
demand $:(.15 M W)(7000 \$ /(M W h-m o)) 12 m o=\$ 12,600$
total : 90,000 +12,600 $=\$ \mathbf{1 0 2 , 6 0 0}$
\square The $I R R$ is the value of d^{\prime} that results in

EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

$$
0=-500,000+102,600 \frac{1-\left(\beta^{\prime}\right)^{15}}{d^{\prime}}
$$

\square The table look up produces the d^{\prime} of 19% and with inflation factored in, we have

$$
\begin{aligned}
(1+d) & =(1+j)\left(1+d^{\prime}\right) \\
& =(1.05)(1.19) \\
& =1.25
\end{aligned}
$$

resulting in a combined IRR of 25%

ANNUALIZED INVESTMENT

\square A capital investment, such as a renewable energy project, requires funds, either borrowed from a bank, or obtained from investors, or taken from the owner's own accounts
\square Conceptually, we may view the investment as a Ioan that converts the investment costs into a series of equal annual payments to pay back the
loan with the interest

ANNUALIZED INVESTMENT

- For this purpose, we use a uniform cash-flow
set and use the relation

present
worth
equal
equal payment series
present worth factor

ANNUALIZED INVESTMENT

Therefore, the equal payment is given by

capital recovery factor

The capital recovery factor measures the speed
with which the initial investment is repaid

EXAMPLE: EFFICIENT AIR CONDITIONER

\square An efficiency upgrade of an air conditioner incurs a $\$ 1,000$ investment and results in annual savings of $\$ \mathbf{2 0 0}$
\square The $\$ 1,000$ is obtained as a 10 - year loan repaid at 7 \% interest
\square The repayment on the loan is done as a uniform cash flow

$$
A=1,000 \frac{0.07}{1-\beta^{10}}=\$ 142.38
$$

EXAMPLE: EFFICIENT AIR CONDITIONER

\square The annual net savings are

$$
200-142.38=\$ 57.62
$$

and not only are the savings sufficient to pay
back the Ioan in 10 years, they also provide a
yearly surplus of \$ $\mathbf{5 7 . 6 2}$
\square The benefits/costs ratio is

$$
\frac{200}{142.38}=1.4
$$

EXAMPLE: PV SYSTEM

\square We consider a $3-k W P V$ system whose capacity
factor $\kappa=0.25$
\square The investment incurred $\$ 10,000$ and the funds
are obtained as a 20 - year 6% loan
\square The annual loan repayments are

$$
A=10,000 \frac{0.06}{1-\beta^{20}}=10,000(0.0872)=\$ 872
$$

EXAMPLE: PV SYSTEM

\square The annual energy generated is

$$
(3)(0.25)(8,760)=6,570 \mathrm{kWh}
$$

We can compute the unit costs of electricity for
break-even operation to be

$$
\frac{872}{6,570}=0.133 \$ / k W h
$$

LEVELIZED BUS - BAR COSTS

\square The comparison of various alternatives must be
carried out on a consistent basis taking into account

O inflation impacts
O fixed investment costs
O variable costs
\square The customary approach for cost valuation consists of the following steps:

LEVELIZED BUS - BAR COSTS

O present worthing of all the cash - flow
O determining the equal amount of an equivalent annual uniform cash - flow set

O determination of the yearly total generation
\square The ratio of the equal amount to the total
generation is called the levelized bus - bar costs of
energy

EXAMPLE: MICROTURBINE ENGINE

\square We consider the economics of a microturbine
with the characteristics given in the table below
\square We calculate

O annualized fixed costs

O initial year variable costs

O inflation impacts

EXAMPLE: MICROTURBINE ENGINE

characteristic	value	units
investment costs	850	\$ / kW
heart rate	12,500	Btu / KWh
capacity factor	0.7	-
fuel costs (year 0)	4.00×10^{-6}	\$ / Btu
annual fuel escalation rate	6	$\%$
variable O\&M costs	0.002	\$ / kWh
annual investor discount rate	10	$\%$
fixed charge rate	12	$\%$
life time	20	$\%$

ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: MICROTURBINE ENGINE

The annualized fixed costs are

$$
\frac{(850 \$ / k W)(12 \%)}{(8760 h)(0.70)}=0.0166 \$ / k W h
$$

\square The initial year variable costs are

$$
\begin{aligned}
A_{0} & =(12.500 \mathrm{Btu} / \mathrm{kWh})\left(4 \times 10^{-6} \$ / B t h\right)+0.002 \$ / k W h \\
& =0.052 \$ / k W h
\end{aligned}
$$

\square We next account for inflation and we compute

$$
d^{\prime}=\frac{d-j}{1+j}=\frac{0.1-0.06}{1+0.06}=0.037736
$$

EXAMPLE: MICROTURBINE ENGINE

The constant uniform cash - flow set with fuel

escalation incorporated is

$$
A_{0} \cdot \frac{1-\left(\beta^{\prime}\right)^{20}}{d^{\prime}}=0.052\left(\frac{1-\left(\frac{1}{1.037736}\right)}{0.0037736}\right)
$$

and the levelized annual costs are

EXAMPLE: MICROTURBINE ENGINE

\square The levelized bus - bar costs are, therefore,

$$
0.0166+0.0847=0.1013 \$ / k W h
$$

