ECE 333 – Green Electric Energy 10. Energy Economics Concepts

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana–Champaign

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ENERGY ECONOMICS CONCEPTS

- The economic evaluation of a renewable energy resource requires a meaningful quantification of the cost elements
 - **O** fixed costs
 - **O variable costs**
- We use engineering economics notions for this purpose since they provide the means to compare on a consistent basis
 - **O** two different projects; or,
 - O the costs with and without a given project

TIME VALUE OF MONEY

- Basic underlying notion: a dollar today is not the same as a dollar in a year
- We represent the time value of money by the standard approach of *discounted cash flows* The notation is
 - P = principal
 - *i* = *interest* value

□ We use the convention that every payment occurs

at the end of a period

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SIMPLE EXAMPLE

loan P	for 1 year	
repay	P+iP=P(1+i) at the second s	ne end of 1 year
year 0	P	
year 1	P(1+i)	
loan P	for <i>n years</i>	
year 0	P	
year 1	(1+i) P	repay/reborrow
year 2	$(1+i)^2 P$	repay/reborrow
year 3	$(1+i)^3 P$	repay/reborrow
•		•
year n	$(1+i)^n P$	repay

COMPOUND INTEREST

end of period	amount owed	interest for next period	amount owed at the beginning of the next period
0	Р	P i	P + P i = P (1 + i)
1	P(1+i)	P(1+i)i	$P(1+i) + P(1+i)i = P(1+i)^{2}$
2	$P(1+i)^2$	$P(1+i)^2 i$	$P(1+i)^{2} + P(1+i)^{2}i = P(1+i)^{3}$
3	$P(1+i)^3$	$P(1+i)^3 i$	$P(1+i)^{3} + P(1+i)^{3}i = P(1+i)^{4}$
:	:		
<i>n</i> –1	$P(1+i)^{n-1}$	$P\left(1+i\right)^{n-1}i$	$P(1+i)^{n-1} + P(1+i)^{n-1}i = P(1+i)^n$
п	$P(1+i)^n$		

the value in the last column at the *e.o.p.* (*k*-1) provides the amount in the first column for the period k ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TERMINOLOGY

end of n periods

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TERMINOLOGY

- □ We call $(1 + i)^n$ the single payment compound amount factor
- U We define

$$\beta \triangleq (1+i)^{-1}$$

🛛 Then,

$$\beta^n = (1+i)^{-n}$$

is the single payment present worth factor

F denotes the *future worth*; **P** denotes the *present*

worth or present value at interest i of a future sum F

Consider a loan of \$ 4,000 at 8 % interest to be repaid in two installments

- \$1,000 and interest at the *e.o.y.* 1
- \$3,000 and interest at the *e.o.y.* 4

The cash flows are

 $\bigcirc e.o.y.$ 1: 1,000 + 4,000 (.08) = \$1,320.00

 $\bigcirc e.o.y. 4:$ 3,000 (1 + .08)³ = \$3,779.14

□ Note that the loan is made in year 0 present \$, but

the repayments are in year 1 and year 4 *future* \$

Given

$$P = $1,000$$
 and $i = .12$

then

$$P(1+i)^5 = \$1,000(1+.12)^5 = \$1,762.34 = F$$

□ We say that with the cost of money of 12 %, *P* and

F are equivalent in the sense that \$ 1,000 today has

the same worth as \$1,762.34 in 5 years

Consider an investment that returns

\$ 1,000 at the e.o.y. 1

\$ 2,000 at the *e.o.y.* 2

i = 10%

We evaluate P

rate at which money can be freely lent or borrowed

$$P = \$ 1,000 (1+.1)^{-1} + \$ 2,000 (1+.1)^{-2}$$

$$\beta^{2}$$

= *\$* 909.9 + *\$* 1,652.09

= \$2,561.98

□ We review this example with a *cash*—*flow diagram*

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

Next, suppose that this investment requires \$ 2,400 now and so at 10 % we say that the investment has a *net present value* given by NPV = \$ 2,561.98 - \$ 2,400 = \$ 161.98

CASH FLOWS

 \Box A *cash-flow* is basically a transfer of an amount A_t

from one entity to another at the *e.o.p.* t

 $\Box \text{ We consider the cash-flow set } \left\{A_0, A_1, A_2, \dots, A_n\right\}$

This set corresponds to the set of the transfers at

the end of the periods in $\{0,1,2,\ldots,n\}$

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CASH FLOWS

\Box We associate the transfer A_t at the *e.o.p. t*,

$$t = 0, 1, 2, ..., n$$

□ The convention for cash flows is

- + inflow
- outflow

Each cash flow requires the specification of:

- O amount;
- O time; and,
- O its sign

CASH FLOWS: FUTURE WORTH

□ Given a cash–flow set $\{A_0, A_1, A_2, ..., A_n\}$ we define the future worth F_n of the cash flow set at the *e.o.y. n* as

$$F_n = \sum_{t=0}^n A_t (1+i)^{n-t}$$

CASH FLOWS : FUTURE WORTH

O Note that each cash flow A_t in the (n + 1) period

set contributes differently to F_n :

CASH FLOWS : PRESENT WORTH

□ We define the present worth *P* of the cash–flow

set as

$$P = \sum_{t=0}^{n} A_{t} \beta^{t} = \sum_{t=0}^{n} A_{t} (1+i)^{-t}$$

□ Note that

$$\boldsymbol{P} = \sum_{t=0}^{n} A_t \left(1 + \boldsymbol{i} \right)^{-t}$$

$$= \sum_{t=0}^{n} A_{t} (1+i)^{-t} (1+i)^{n} (1+i)^{-n}$$

CASH FLOWS

$$= \underbrace{\left(1+i\right)^{-n}}_{\beta^{n}} \underbrace{\sum_{t=0}^{n} A_{t} \left(1+i\right)^{n-t}}_{F_{n}}$$

$$= \beta^n F_n$$

or, equivalently,

$$F_n = \left(1+i\right)^n P$$

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

Consider the cash – flow set $\{A_1, A_2, \dots, A_n\}$ with

$$A_t = A$$
 $t = 1, 2, ..., n$

Such a set is called an *equal payment cash flow set*

We compute the present worth at t = 0

$$P = \sum_{t=1}^{n} A_{t} \beta^{t} = A \sum_{t=1}^{n} \beta^{t} = A \beta \Big[1 + \beta + \beta^{2} + \dots + \beta^{n-1} \Big]$$

Now, for $0 < \beta < 1$, we have the identity $\sum_{j=0}^{\infty} \beta^{j} = \frac{1}{1 - \beta}$ $\sum_{j=0}^{\infty} \beta^{j}$ It follows that $1 + \beta + ... + \beta^{n-1} = \sum_{j=1}^{n-1} \beta^{j} - \beta^{n} \left[1 + \beta + \beta^{2} + ... + \beta^{n-1} + ... \right]$ i=0 $= (1 - \beta^n) \sum \beta^j$

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

$$=\frac{1-\beta^{n}}{1-\beta}$$

Therefore

$$P = A\beta \frac{1-\beta^n}{1-\beta}$$

But

$$\beta = (1+d)^{-1},$$

where d is the interest or discount rate and so

$$1-\beta = 1 - \frac{1}{1+d} = \frac{d}{1+d} = \beta d$$

We write

$$P = A \frac{1 - \beta^n}{d}$$

and we call $\frac{1-\beta^n}{d}$ the equal payment series

present worth factor

EQUIVALENCE

We consider two cash – flow sets

$$\left\{A_{t}^{a}: t = 0, 1, 2, ..., n\right\}$$
 and $\left\{A_{t}^{b}: t = 0, 1, 2, ..., n\right\}$

under a given discount rate d

 \Box We say $\left\{A_{t}^{a}\right\}$ and $\left\{A_{t}^{b}\right\}$ are *equivalent* cash – flow

sets if and only if

$$F_{m}$$
 of $\{A_{t}^{a}\} = F_{m}$ of $\{A_{t}^{b}\}$ for every value of m

EQUIVALENCE EXAMPLE

Consider the two cash–flow sets under d = 7%

EQUIVALENCE

□ We compute

and

$$P^{a} = 2,000 \sum_{t=3}^{7} \beta^{t} = 7,162.55$$

$$P^{b} = 8,200.40 \ \beta^{2} = 7,162.55$$

 \Box Therefore, $\{A_t^a\}$ and $\{A_t^b\}$ are equivalent cash

flow sets under d = 7%

Consider the cash–flow set illustrated below

$$F_8 = 300 (1 + .06)^7 - 300 (1 + .06)^5 +$$

$200 (1 + .06)^{4} + 400 (1 + .06)^{2} + 200$

= \$951.56

U We also compute P

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

$$P = 300 (1 + .06)^{-1} - 300 (1 + .06)^{-3} +$$

$$200 (1 + .06)^{-4} + 400 (1 + .06)^{-6} + 200 (1 + .06)^{-8}$$

= *\$*597.04

We check that at d = 6%

$$F_8 = 597.04 (1 + .06)^8 = \$951.56$$

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DISCOUNT RATE

- The interest rate *i* is, typically, referred to as the *discount rate* and is denoted by *d*
- In the conversion of the future amount *F* to the present worth *P*, we view the *discount rate* as the interest rate that may be earned from the best investment alternative
- □ A postulated savings of \$10,000 in a project in 5
 - years is worth at present $P = F_5 \beta^5 = 10,000(1+d)^{-5}$

DISCOUNT RATE

For d = 0.1

P =\$ 6,201,

while for d = 0.2

P = \$4,019

□ In general, for a specified future worth, the *lower the*

discount factor, the higher the present worth is

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DISCOUNT RATE

□ We may state this notion slightly differently; the

lower the discount factor, the more valuable a

future payoff becomes

□ The present worth of a set of costs under a given

discount rate is called the *life-cycle costs*, an

important term in economic assessment studies

 \Box We consider the purchase of two 100-hp motors –

a and *b* – to be used over a 20–*year* period; the

given discount rate is 10 %

The relative merits of *a* and *b* are

motor	<i>costs</i> (\$)	load (kW)
а	2,400	79.0
b	2,900	77.5

□ The motor is used 1,600 *hours per year* and

electricity costs are constant at 0.08 \$/kWh

□ We evaluate yearly energy costs for the two motors $A_t^a = (79.0 \ kW)(1600 \ h)(.08 \ s/kWh) = \$ 10,112$ t = 1,2,...,20

 $A_t^b = (77.5 \ kW)(1600 \ h)(.08 \ s/kWh) = \$ 9,920$

□ We next evaluate the present worth of *a* and *b*

$$P^{a} = 2,400 + 10,112 \left(\sum_{t=1}^{20} (1.1)^{-t} + 8.5136 \right)$$

= *\$***88,489**

$$P^{b} = 2,900 + 9,920 \left(\sum_{t=1}^{20} (1.1)^{-t} \right) - 8.5136$$

= \$87,354

The difference

 $P^{a} - P^{b} = 88,489 - 87,354 = \$1,135$

□ Therefore, the purchase of motor *b* results in the

savings of \$1,135 under the specified 10 %

discount rate due to the use of the smaller load

consumption motor over the 20-year horizon

INFINITE HORIZON CASH – FLOW SETS

Consider a uniform cash–flow set with $n \rightarrow \infty$

$$\left\{A_{t}=A:t=0,1,2,...\right\}$$

□ Then,

$$P = A \frac{\left(1-\beta^n\right)}{d} \xrightarrow[n \to \infty]{} A \frac{1}{d}$$

□ For an infinite horizon uniform cash–flow set

INFINITE HORIZON CASH – FLOW SETS

$$\frac{A}{P} = d$$

□ We may view *d* as the *capital recovery factor* with the

following interpretation:

for an initial investment of P, the amount

d * P = A

is recovered annually in terms of returns

on the investment A

□ We consider a cash–flow set

$$\left\{A_{t} = A : t = 0, 1, 2, ..., n\right\}$$

 $\Box The value of d for which$

$$P - \sum_{t=0}^{n} A_{t} \beta^{t} = 0$$

is called the *internal rate of return (IRR*)

☐ The IRR is a measure of how quickly we recover

an investment, or stated differently, the speed or

rate at which the returns recover an investment

EXAMPLE: INTERNAL RATE OF RETURN

Consider the following cash – flow set

□ The present value

$$P = -30,000 + 6,000 \frac{1 - \beta^8}{d} = 0$$

has the solution

 $d \approx 12\%$

□ The interpretation is that under a 12 % *discount rate*,

the present value of the cash-flow set is 0 and so

$d \approx 12\%$ is the *IRR* for the given cash–flow set

Consider an *infinite horizon* simple investment

Therefore

Consider

I = \$1,000

A = \$ 200

and

d = 20 %

We interpret that the returns capture 20 % of the investment each year, or equivalently that we have a simple payback period of 5 years
ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: EFFICIENT REFRIGERATOR

A more efficient refrigerator incurs an investment

of additional \$1,000 but provides \$200 of energy

savings annually

□ For a lifetime of 10 years, the *IRR* is computed

from the solution of

$$0 = -1,000 + 200 \frac{1-\beta^{10}}{d}$$

or

EXAMPLE: EFFICIENT REFRIGERATOR

$$\frac{1-\beta^{10}}{d}=5$$

□ *IRR* tables show that

$$\frac{1-\beta^{10}}{d}\bigg|_{d=15\%} = 5.02$$

and so the IRR is approximately 15 %

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

45

INFLATION IMPACTS

- Inflation is a general *increase* in the level of prices in an economy; equivalently, we may view inflation as a general *decline* in the value of the *purchasing power of money*
- Inflation is measured using prices: different products may have distinct escalation rates
 Typically, indices such as the *CPI* – the *consumer*
 - price index use a market basket of goods and

services as a proxy for the entire US economy • reference basis is the year 1967 with the price of \$100 for the basket $\longrightarrow L_{\theta}$ • In the year 1990, the same basket cost $\$ 374 \longrightarrow L_{21}$ \bigcirc the average inflation rate *j* is estimated from

$$(1+j)^{23} = \frac{374}{100} = 3.74$$

and so

INFLATION RATE

□ The inflation rate contributes to the *overall market*

interest rate i, **sometimes called the** *combined interest*

rate

 $\Box \text{ We write, using } d \text{ for } i$

interest rate

rate

rate

INFLATION

We obtain the following identities

$$d'=\frac{d-j}{1+j}$$

and

$$j=\frac{d-d'}{1+d'}$$

49

We express the cash flow in then current dollars

in the set
$$\{A_t: t = 0, 1, 2, ..., n\}$$

□ The following is synonymous terminology

 $current \equiv then \ current \equiv inflated \equiv after \ inflation$

□ An *indexed* or *constant*—*worth* cash—flow is one that

does not explicitly take inflation into account, i.e.,

whatever amount in current inflated dollars will

buy the same goods and services as in the

reference year, typically, the year 0

□ The following terms are synonymous

 $constant \equiv indexed \equiv inflation free \equiv before inflation$

and we use them interchangeably

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

51

We define the set of constant currency flows

$$\left\{W_t: t=0,1,2,\ldots,n\right\}$$

corresponding to the set

$$\left\{A_t: t=0,1,2,\ldots,n\right\}$$

with each element A_{i} given in period t currency

□ We use the relationship

$$A_t = W_t \left(1+j\right)^t$$

or equivalently

$$W_{t} = A_{t} \left(1+j\right)^{-t}$$

with W_t expressed in reference year 0 (today's)

dollars

We have

$$P = \sum_{t=0}^{n} A_{t} \beta^{t}$$

= $\sum_{t=0}^{n} W_{t} (i+j)^{t} (i+d)^{-t}$
= $\sum_{t=0}^{n} W_{t} (i+j)^{t} (i+j)^{-t} (i+d')^{-t}$

$$= \sum_{t=0}^{n} W_t \left(i + d' \right)^{-t}$$

Therefore, the *real interest rate* d' is used to

discount the indexed cash flows

In summary,

we discount current *dollar* cash flow at *d*

we discount indexed *dollar* cash flow at d'

□ Whenever inflation is taken into account, it is con-

venient to carry out the analysis in present worth

rather than future worth or on a *cash-flow basis*

Under inflation (j > 0), it follows that a uniform

set of cash flows $\{A_t = A : t = 1, 2, ..., n\}$ implies a

real decline in the cash flows

EXAMPLE: INFLATION CALCULATIONS

We consider an annual inflation rate of j = 4 %;

the cost for a piece of equipment is assumed

constant for the next 3 years in terms of today's \$

$$W_0 = W_1 = W_2 = W_3 = $1,000$$

□ The corresponding cash flows in current *\$* are

$$A_0 = \$ 1,000$$

 $A_1 = 1,000(1+.04) = \$ 1,040$

EXAMPLE: INFLATION CALCULATIONS

$$A_2 = 1,000(1+.04)^2 = \$ 1,081.60$$

 $A_3 = 1,000(1+.04)^3 = \$ 1,124.86$

\Box The interpretation of A_3 is that under 4 % inflation,

\$1,125 in 3 years will have the same value as

\$1,000 today; it must not be confused with the

present worth calculation

MOTOR ASSESSMENT EXAMPLE

- **Given Set 5** For the motor *a* or *b* purchase example, we
 - consider the escalation of electricity at an annual rate of j = 5 %
- **We compute the** *NPV* **taking into account the**
 - inflation (price escalation of 5 %) and d = 10 %
- □ Then,

$$d' = \frac{d-j}{1+j} = \frac{.10 - .05}{1+.05} = \frac{.05}{1.05} = 0.04762$$

MOTOR ASSESSMENT

□ The savings of \$192 per year are in constant dollars $P_{savings} = \sum_{t=1}^{20} W_t (1 + d^4)^{-t} - 0.04762$ and so $P_{savings} = $2,442$

□ The total savings are

$$P = -500 + P_{savings} = \$1,942$$

which are larger than those of \$1,135 without

electricity price escalation

EXAMPLE: *IRR* FOR *HVAC* RETROFIT WITH INFLATION

□ An energy efficiency retrofit of a commercial site reduces the HVAC load consumption to 0.8 GWh from 2.3 *GWh* and the peak demand by 0.15 *MW* **Electricity costs are 60** *\$/MWh* and demand charges are 7,000 \$/(MW-mo) and these prices escalate at an annual rate of i = 5%□ The retrofit requires a *\$* 500,000 investment today

and is planned to have a 15 – year lifetime

EXAMPLE: *IRR* FOR *HVAC* RETROFIT WITH INFLATION

□ We evaluate the *IRR* for this project

The annual savings are

energy : (2.3 - 0.8)GWh(60 \$ / MWh) = \$90,000

demand: $(.15 MW)(7000 \ \text{mms} / (MWh - mo)) 12mo = \ \text{mms} 12,600$

total : 90,000 + 12,600 = \$102,600

The *IRR* is the value of d' that results in

EXAMPLE: *IRR* FOR *HVAC* RETROFIT WITH INFLATION

1 -

$$0 = -500,000 + 102,600 \frac{1 - (\beta')^{15}}{d'}$$

The table look up produces the *d'* of 19 % and

with inflation factored in, we have (1+d) = (1+j)(1+d')= (1.05)(1.19)

= 1.25

resulting in a combined IRR of 25 %

ANNUALIZED INVESTMENT

- A capital investment, such as a renewable energy project, requires funds, either borrowed from a bank, or obtained from investors, or taken from the owner's own accounts Conceptually, we may view the investment as a
 - loan that converts the investment costs into a
 - series of equal annual payments to pay back the
 - **loan with the interest**

ANNUALIZED INVESTMENT

□ For this purpose, we use a uniform cash – flow

set and use the relation

ANNUALIZED INVESTMENT

□ Therefore, the equal payment is given by

$$A = P \begin{pmatrix} d \\ 1 - \beta^n \end{pmatrix} \leftarrow \begin{array}{c} \text{capital recovery} \\ \text{factor} \end{array}$$

□ The capital recovery factor measures the speed

with which the initial investment is repaid

EXAMPLE: EFFICIENT AIR CONDITIONER

 An efficiency upgrade of an air conditioner incurs a \$ 1,000 investment and results in annual savings of \$ 200

The \$1,000 is obtained as a 10 – year loan repaid at 7 % interest

The repayment on the loan is done as a uniform cash flow

$$A = 1,000 \ \frac{0.07}{1-\beta^{10}} = \$ \ 142.38$$

EXAMPLE: EFFICIENT AIR CONDITIONER

□ The annual net savings are

200 - 142.38 = \$57.62

and not only are the savings sufficient to pay back the loan in 10 *years*, they also provide a yearly surplus of \$57.62

□ The *benefits/costs ratio* is

$$\frac{200}{142.38} = 1.4$$

EXAMPLE: PV SYSTEM

 \Box We consider a 3 – kW PV system whose capacity

factor $\kappa = 0.25$

□ The investment incurred \$10,000 and the funds

are obtained as a 20 – year 6 % loan

The annual loan repayments are

 $A = 10,000 \frac{0.06}{1 - \beta^{20}} = 10,000(0.0872) = \$ 872$

□ The annual energy generated is

$$(3)(0.25)(8,760) = 6,570 \ kWh$$

□ We can compute the unit costs of electricity for

break-even operation to be

$$\frac{872}{6,570} = 0.133 \ \$ / kWh$$

LEVELIZED BUS – BAR COSTS

- The comparison of various alternatives must be carried out on a consistent basis taking into account
 - **O** inflation impacts
 - **O fixed investment costs**
 - **O variable costs**

The customary approach for cost valuation consists of the following steps:

LEVELIZED BUS – BAR COSTS

- **O** present worthing of all the cash flow
- determining the equal amount of an *equivalent* annual uniform cash – flow set
- **O** determination of the yearly total generation
- □ The ratio of the equal amount to the total
 - generation is called the *levelized bus bar* costs of

energy

□ We consider the economics of a microturbine

with the characteristics given in the table below

We calculate

O annualized fixed costs

O initial year variable costs

O inflation impacts

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

73

characteristic	value	units
investment costs	850	\$ / kW
heart rate	12,500	Btu / KWh
capacity factor	0.7	_
fuel costs (year 0)	4.00 x 10 -6	\$ / Btu
annual fuel escalation rate	6	%
variable O&M costs	0.002	\$ / kWh
annual investor discount rate	10	%
fixed charge rate	12	%
life time	20	у

□ The annualized fixed costs are

$$\frac{(850\,\text{\&}/kW)(12\,\%)}{(8760\,h)(0.70)} = 0.0166 \, \text{\&}/kWh$$

The initial year variable costs are

$$A_{0} = (12.500 Btu/kWh) (4 \times 10^{-6} \text{ s/Btu}) + 0.002 \text{ s/kWh}$$

 $= 0.052 \ \text{s/kWh}$

We next account for inflation and we compute

$$d' = \frac{d - j}{1 + j} = \frac{0.1 - 0.06}{1 + 0.06} = 0.037736$$

□ The constant uniform cash – flow set with fuel

escalation incorporated is

$$A_{\theta} \cdot \frac{1 - (\beta')^{20}}{d'} = 0.052 \left(\frac{1 - \left(\frac{1}{1.037736}\right)^{20}}{0.0037736} \right)$$

and the levelized annual costs are

□ The levelized bus – bar costs are, therefore,

$0.0166 + 0.0847 = 0.1013 \$ /kWh