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CHRONOLOGICAL LOAD  FOR  A  
SUMMER  WEEK
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A  WEEKDAY  CHRONOLOGICAL  LOAD  
CURVE
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FRIDAY  HOURLY  LOAD  VALUES
h load (MW)

0100 820

0200 840

0300 885

0400 1010

0500 1375

0600 1560

0700 1690

0800 1775

0900 1810

1000 1875

1100 1975

1200 2000

h load (MW)
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1900 1130

2000 975

2100 875
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2400 750
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FRIDAY  LOAD  DURATION  CURVE
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LOAD  DURATION  CURVE  FOR  A 
SUMMER  WEEK
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q Inability to 
m specify the load at any specific hour
m distinguish between weekday and weekend 

loads
q Ability to 

m specify the number of hours at which the load 
exceeds any given value

m quantify the total energy requirement for the 
given period in terms of the area under the LDC

LOAD  DURATION  CURVE 
CHARACTERISTICS
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q The costs of generation by a conventional unit 

are described by an input-output curve, which 

specifies the level of input required to obtain a 

required level of output

q Typically, such curves are obtained from actual 

measurements and are characterized by their 

monotonically non–decreasing shapes

CONVENTIONAL  GENERATION  UNIT  
ECONOMICS
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GENERATION  UNIT  ECONOMICS
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INPUT – OUTPUT MEASUREMENTS
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EXAMPLE :  
CWLP  DALLMAN  UNITS  1 AND  2
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CWLP DALLMAN  UNITS  1 AND  2
INPUT – OUTPUT  CURVE  FITTING
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q The output is in MW and the input is in bbl/h or 
Btu/h (volume or thermal heat contents of the 
input fuel) 

q We may also think of the abscissa in units $/h
since the costs of the input are obtained via a 
linear scaling the fuel input by the fuel unit price 

q We use the input-output curve to obtain the 
incremental input – output curve which provides  the 
costs to generate an additional MWh at a given 
level of output

GENERATION  UNIT  ECONOMICS



ECE 333   © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                        14

GENERATION  UNIT  ECONOMICS
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INCREMENTAL  CHARACTERISTICS
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HEAT  RATE
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q The heat rate is a figure of merit widely used by 

the industry

q The heat rate gives the inverse of the efficiency 

measure of a generation unit since

q The lower the H.R., the higher is the efficiency of 

the resource

HEAT  RATE

  
H .R. = input

output
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CWLP DALLMAN  UNITS  1 AND  2
H. R.  &  INCREMENTAL  H. R.  CURVES
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q The amount of generation a generating unit 
produces is a function of 

m the generator capacity
m the generator availability
m the generator loading order to meet the load

q A 100 % available base–loaded unit with 
capacity runs around the clock and so in a  T–hour

period generates total MWh given by

GENERATOR  CAPACITY  FACTOR

  
E = c max T

 
c max
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q The maximum it can generate is

q The capacity factor      of a base-loaded  unit is

q A cycling unit exhibits on – off behavior since its 
loading depends on the system demand; its          

exceeds the actual generation since 
the unit generates only during certain periods

GENERATOR  CAPACITY  FACTOR

  
E max = c max T

κ

   
κ =

E
E max

= 1

  
E max = c max T
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q Therefore, a cycling unit has a c.f.

q For example, a cycling unit of 150MW that 
operates typically 1,800 hours per year with no 
outages and at full capacity has 

q A peaking unit operates only for a few hours 
each year and consequently has a relatively 
small c.f.

GENERATOR  CAPACITY  FACTOR

   
κ =

E
E max

< 1

  
κ = 150 ⋅ 1,800

150 ⋅ 8,760
= 180

876
= 0.21
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q An expensive peaker may have, say, a c.f.

indicating that under perfect availability it ope-
rates about 438 hours a year

q Typically,     is given a definition on a yearly basis

where, the denominator may account for annual 
maintenance and forced outages and so would 
imply less than 8,760 hours of operation

GENERATOR  CAPACITY  FACTOR

  κ = 5%

 
κ = annual energy generated

maximum energy generated

κ



ECE 333   © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                        23

CAPACITY  FACTOR
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LOADING  OF   RESOURCES
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LOADING  OF  RESOURCES
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q Fixed costs are those costs incurred that are 

independent of the operation of a resource and 

are incurred even if the resource is not operating

q Typical components of fixed costs are:

m investment or capital costs

m insurance

m fixed O&M

m taxes

RESOURCE  FIXED  AND  VARIABLE  
COSTS
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q Variable costs are associated with the actual 

operation of a resource

q Key components of variable costs are

m fuel costs

m variable O&M

m emission costs

RESOURCE  FIXED  AND  VARIABLE  
COSTS
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q The fixed charge rate annualizes the capital costs to 

produce a yearly uniform cash–flow set over the 

life of a resource

q The annual fixed costs are 

q Typically, the yearly charge is given on a per unit 

– kW or MW – basis

ANNUALIZED  INVESTMENT  OR  
CAPITAL  COSTS

 yearly costs = fixed costs( ) ⋅ fixed charged rate( )
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q The fixed charge rate takes into account the 

interest on loans, acceptable returns for investors 

and other fixed cost components: however, each 

component is independent of the generated MWh

q The rate strongly depends on the costs of capital

ANNUALIZED  INVESTMENT  OR  
CAPITAL  COSTS
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q The variable costs are a function of the number 

of hours of operation of the unit or equivalently 

of the capacity factor 

q The annualized variable costs may vary from 

year to year

ANNUALIZED  VARIABLE  COSTS
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q The yearly variable costs explicitly account for 

fuel cost escalation

q Often, the yearly costs are given on a per unit – kW

or MW – basis

q We illustrate these concepts with a pulverized –

coal steam plant

ANNUALIZED  VARIABLE  COSTS
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EXAMPLE: COAL – FIRED  STEAM  
PLANT

characteristic value units

capital costs 1,400 $/kW

heat rate 9,700 Btu/ kWh

fuel costs 1.5 $/MBtu

variable costs 0.0043 $/kWh

annual fixed charge rate 0.16

full output period 8,000 h
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q The annualized fixed costs per kW are

q The initial year annual variable costs per kW are 

EXAMPLE: COAL–FIRED  STEAM  
PLANT

  

1.5×10 −6 $ / Btu( ) 9,700 Btu / kWh( ) +
0.0043 $ / kWh

#

$
%
%

&

'
(
(

8,000h( )

= 150.8$ / kW

  1,400 $ / kW( ) 0.16( ) = 224 $ / kW
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q Total annual costs for 8,000 h are

q Note, we do the example under the assumption of 
full output for 8,000 h and 0 output for the 

remaining 760 h of the year
q We also neglect any possible outages of the unit 

and so explicitly ignore any uncertainty in the 
unit performance

EXAMPLE: COAL–FIRED STEAM  
PLANT

  

224 +150.8( )$ / kW
8,000 h

= 0.0469 $ / kWh


