ECE 333 - GREEN ELECTRIC ENERGY 12. The Solar Energy Resource

George Gross

Department of Electrical and Computer Engineering
 University of Illinois at Urbana-Champaign

SOLAR ENERGY

\square Solar energy is the most abundant renewable
energy source and is considered to be very clean
\square Solar energy is harnessed for many applications,
including electricity generation, lighting and

SOLAR RESOURCE LECTURE

\square The solar energy source
E Extraterrestrial solar irradiation

Analysis of solar position in the sky and its
application to the determination of
O optimal tilt angle design for a solar panel
O sun path diagram for shading analysis
O solar time and civil time relationship

UNDERLYING BASIS: THE SUN IS A LIMITLESS ENERGY SOURCE

SOLAR ENERGY

\square The thermonuclear reactions, as the hydrogen atoms fuse together to form helium in the sun, are the source of solar energy
\square In every second, roughly 4 billion kg of mass are converted into energy, as described by Einstein's
famous mass-energy equation $E=m c^{2}$
\square This immense energy generated is huge so as to keep the sun at very high temperatures at all times

SOLAR ENERGY

\square The plentiful solar energy during the past 4 or 5 billion years is expected to continue in the future
\square Every object emits radiant energy in an amount that is a function of its temperature; the sun emits solar energy into space via radiation
\square Insolation or solar irradiation stated in units of $\frac{W}{\boldsymbol{m}^{2}}$ measures the power density of the solar energy

PLANCK'S LAW

\square Physicists use the theoretical concept of a
blackbody - defined to be a perfect emitter, as well
as a perfect absorber - to discuss radiation
\square The emissive power intensity of a blackbody is a
function of its wavelength λ and temperature τ as
expressed by Planck's law
ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PLANCK'S LAW

emissive power intensity

ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

WIEN'S DISPLACEMENT RULE

An important feature of blackbody radiation is
given by Wien's displacement rule, which determines the wavelength $\lambda_{\max }$ at which the emissive power intensity reaches its peak value

$$
\lambda_{\max }=\frac{2,898}{\tau} \mu m
$$

EXTRATERRESTRIAL SOLAR SPECTRUM

ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE SOLAR IRRADIATION

\square The sun's surface temperature is estimated to be

5,800 K and its power density value is assumed as
$1.37 \mathrm{~kW} / \mathrm{m}^{2}$ - the value of insolation or solar
irradiation just outside the earth's atmosphere
\square The sun emits maximum energy at the wavelength

$$
\left.\lambda_{\max }\right|_{s u n}=\frac{2,898}{5,800} \mu m=0.5 \mu m
$$

EXTRATERRESTRIAL SOLAR IRRADIATION

Extraterrestrial solar irradiation is defined as the solar irradiation that strikes an imaginary surface at the top of the earth's atmosphere, which lies perpendicular to the line from the earth's center to the sun's center

STEFAN-BOLTZMANN LAW OF RADIATION

\square The total area under the power intensity curve is the blackbody radiant power density emitted over all the wavelengths

The Stefan-Boltzmann law of radiation states that
the total radiant

the surface area of

Stefan-Boltzmann constant: $5.67 \times 10^{-8} W / m^{2}-K$

THE EARTH'S RADIATION

\square We consider the earth to be a blackbody with
average surface temperature $15^{\circ} \mathrm{C}$ and area equal
to $5.1 \times 10^{14} \mathrm{~m}^{2}$
\square The Stefan-Boltzmann law of radiation states that the
earth radiates

THE EARTH'S RADIATION

$$
\begin{aligned}
p_{\text {earth }} & =\sigma A \tau^{4} \\
& =\left(5.67 \times 10^{-8}\right)\left(5.1 \times 10^{14}\right)(15+273)^{4} \\
& =2 \times 10^{17} \mathrm{~W}
\end{aligned}
$$

\square The wavelength at which the maximum power is
emitted by earth is given by Wien's displacement rule

$$
\left.\lambda_{\max }\right|_{\text {earth }}=\frac{2,898}{288} \mu m=10.1 \mu m
$$

THE SPECTRAL EMISSIVE POWER INTENSITY OF A 288-K BLACKBODY

EARTH'S ORBIT OVER ITS YEARLY REVOLUTION AROUND THE SUN

EXTRATERRESTRIAL SOLAR IRRADIATION

EXTRATERRESTRIAL SOLAR IRRADIATION OVER A YEAR

\square In the analysis of all solar issues, we use solar time
based on the sun's position with respect to the
earth, instead of clock or civil time
\square Extraterrestrial solar irradiation depends on the
distance between the earth and the sun and
therefore is a function of the day of the year

THE ANNUAL EXTRATERRESTRIAL SOLAR IRRADIATION

EXTRATERRESTRIAL SOLAR IRRADIATION OVER A YEAR

The extraterrestrial solar irradiation variation over
a day is negligibly small and so we assume that
its value is constant as the earth rotates each day
\square We use the approximation for $\left.i_{0}\right|_{d}$ given by:

$$
\left.i_{0}\right|_{d}=\underbrace{1,367\left[1+0.034 \cos \left(2 \pi \frac{d}{365}\right)\right]}_{W / m^{2}} \begin{aligned}
& d=1,2, \ldots \\
& ., 365 / 366
\end{aligned}
$$

EXTRATERRESTRIAL SOLAR IRRADIATION

\square We consider the approximation of extraterrestrial solar irradiation on January 1: $d=1$

$$
\left.i_{0}\right|_{1}=1,367\left[1+0.034 \cos \left(2 \pi \frac{1}{365}\right)\right]=1,413 \frac{W}{m^{2}}
$$

Now, for August 1, $d=213$ and the extraterrestrial solar irradiation is approximately

$$
\left.i_{0}\right|_{213}=1,367\left[1+0.034 \cos \left(2 \pi \frac{213}{365}\right)\right]=1,326 \frac{W}{m^{2}}
$$

EXTRATERRESTRIAL SOLAR IRRADIATION

\square We observe that in the Northern hemisphere, the
extraterrestrial solar irradiation is higher on a cold
winter day than on a hot summer day
\square This phenomenon results from the fact that the sunlight enters into the atmosphere with different
incident angles; these angles impact greatly the

EXTRATERRESTRIAL SOLAR IRRADIATION

fraction of extraterrestrial solar irradiation received
on the earth's surface at different times of the year
\square As such, at a specified geographic location, we need to determine the solar position in the sky to evaluate the effective amount of solar irradiation at
that location

THE SOLAR POSITION IN THE SKY

The solar position in the sky varies as a function of:

O the specific geographic location of interest;

O the time of day due to the earth's rotation around its tilted axis; and,

O the day of the year that the earth is on its orbital revolution around the sun

LATITUDE AND LONGITUDE

A geographic location on earth is specified fully
by the local latitude and longitude
\square The latitude and longitude pair of geographic coordinates specify the North-South and the East-West
positions of a location on the earth's surface; the
coordinates are expressed in degrees or radians

LATITUDE AND LONGITUDE

LATITUDE AND LONGITUDE

THE SOLAR IRRADIATION VARIES BY THE GEOGRAPHIC LOCATION

EARTH'S ROTATION

EARTH'S ROTATION

\square Although the sun's position is fixed in space, the earth's rotation around its tilted axis results in the
"movement" of sun from east to west during each
day's sunrise-to-sunset period
The "movement" of the sun's position in the sky
causes variations in the solar irradiation received
at a specified location on the earth's surface

THE SOLAR IRRADIATION VARIES AS A FUNCTION OF THE TIME OF A DAY

ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE SOLAR POSITION IN THE SKY AT ANY TIME OF THE DAY

\square The solar position in the sky at any time of the day - sunrise-to-sunset period - is expressed in terms of the altitude angle and the solar azimuth angle
\square The altitude angle is defined as the angle between the sun and the local horizon, which depends on the location's latitude, solar declination angle and solar hour angle

ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SOLAR DECLINATION ANGLE

\square The solar declination angle refers to the angle between the plane of the equator and an imaginary line from the center of the sun to the center of the earth

The solar declination angle variation during a day is sufficiently small and so we assume it to remain constant and represent it as a function of d by $\left.\delta\right|_{d}$

SOLAR DECLINATION ANGLE

$$
\left.\delta\right|_{d}=0.41 \sin \left[\frac{2 \pi}{365}(d-81)\right] \text { radians }
$$

solar rays

SOLAR HOUR ANGLE

- Solar noon is the time at which the solar position in the sky is vertically over the local meridian, i.e., the line of longitude; in other words, the sun is due South (North) of the location in the Northern (Southern) Hemisphere
\square Solar hour angle $\theta(h)$ refers to the angular rotation in radians the earth must go through to reach the solar noon; h is positive before the solar noon ante meridiem - and negative after solar noon - post meridiem

SOLAR HOUR ANGLE

\square We consider the earth to rotate $\frac{2 \pi}{24}$ each hour; so

$$
\theta(h)=\frac{\pi}{12} h \text { radians }
$$

\square At 11 a.m. in solar time

$$
\theta(1)=\frac{\pi}{12}
$$

and at 2 p.m. in solar time

$$
\theta(-2)=-\frac{\pi}{6}
$$

ALTITUDE ANGLE

Then, the relation of altitude angle $\left.\beta(h)\right|_{d}$ and the

location's latitude, solar declination angle and solar
hour angle is given by

$$
\sin \left(\left.\beta(h)\right|_{d}\right)
$$

$$
=\cos (\ell) \cos \left(\left.\delta\right|_{d}\right) \cos (\theta(h))+\sin (\ell) \sin \left(\left.\delta\right|_{d}\right)
$$

where ℓ is the local latitude

EXAMPLE: ALTITUDE ANGLE AT CHAMPAIGN

\square Champaign's latitude is 0.7 radians
\square October 22 corresponds to $d=295$; the solar declination angle is computed to be

$$
\left.\delta\right|_{295}=0.41 \sin \left[\frac{2 \pi}{365}(295-81)\right]=-0.21 \text { radians }
$$

At 1 p.m. solar time, the hour angle is

$$
\theta(-1)=\frac{\pi}{12} \cdot(-1)=-\frac{\pi}{12} \text { radians }
$$

EXAMPLE: ALTITUDE ANGLE AT CHAMPAIGN

\square We compute the altitude angle at Champaign from

$$
\begin{aligned}
& \sin \left(\left.\beta(-1)\right|_{295}\right) \\
& =\cos (0.7) \cos (-0.21) \cos \left(-\frac{\pi}{12}\right)+\sin (0.7) \sin (-0.21) \\
& =0.59
\end{aligned}
$$

and so

$$
\left.\beta(-1)\right|_{295}=\sin ^{-1}(0.59)=0.623 \text { radians }
$$

SPECIAL CASE: THE ALTITUDE ANGLE AT SOLAR NOON

SPECIAL CASE: ALTITUDE ANGLE AT SOLAR NOON

\square The altitude angle at solar noon of day d satisfies

$$
\begin{aligned}
& \sin \left(\left.\beta(0)\right|_{d}\right) \\
& =\cos (\ell) \cos \left(\left.\delta\right|_{d}\right) \cos (\theta(0))+\sin (\ell) \sin \left(\left.\delta\right|_{d}\right)
\end{aligned}
$$

\square However, a more direct expression for $\left.\beta(0)\right|_{d}$ is obtained from the geometric relationship

$$
\left.\beta(0)\right|_{d}=\frac{\pi}{2}-\ell+\left.\delta\right|_{d} \text { radians }
$$

EXAMPLE: ALTITUDE ANGLE AT SOLAR NOON

\square We determine the altitude angle for Champaign at
$\ell=0.7$ radians, at solar noon on March $1(d=60)$
\square The solar declination angle is

$$
\left.\delta\right|_{60}=0.41 \sin \left[\frac{2 \pi}{365}(60-81)\right]=-0.15 \text { radians }
$$

The altitude angle at solar noon is

$$
\left.\beta(0)\right|_{60}=\frac{\pi}{2}-\ell+\left.\delta\right|_{60}=0.72 \text { radians }
$$

THE SOLAR AZIMUTH ANGLE

\square The solar azimuth angle ϕ is defined as the angle between a due South line in the Northern Hemisphere and the projection of the line of sight to the sun on the earth surface
\square We use the convention that ϕ is positive when the sun is in the East - before solar noon - and negative when the sun is in the West - after noon

THE SOLAR AZIMUTH ANGLE

ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE SOLAR AZIMUTH ANGLE

The equation for the solar azimuth angle $\left.\phi(h)\right|_{d}$ is
determined from the relationship

$$
\sin \left(\left.\phi(h)\right|_{d}\right)=\frac{\cos \left(\left.\delta\right|_{d}\right) \sin (\theta(h))}{\cos \left(\left.\beta(h)\right|_{d}\right)}
$$

\square Since the sinusoidal function is given to
ambiguity because $\sin x=\sin (\pi-x)$, we need to

THE SOLAR AZIMUTH ANGLE

determine whether the azimuth angle is greater or

less than $\frac{\pi}{2}$:
if $\cos (\theta(h)) \geq \frac{\tan \left(\left.\delta\right|_{d}\right)}{\tan (\ell)}$ then $|\phi(h)|_{d} \left\lvert\, \leq \frac{\pi}{2}\right.$
else

$$
|\phi(h)|_{d} \left\lvert\,>\frac{\pi}{2}\right.
$$

EXAMPLE: WHERE IS THE SUN IN THE SKY

\square Determine the altitude and the solar azimuth angles
at 3 p.m. in Champaign with latitude $\ell=0.7$ radians
at the summer solstice $\mathbf{- d = 1 7 2}$
\square The solar declination is

$$
\left.\delta\right|_{172}=0.41 \text { radians }
$$

\square The hour angle at 3 p.m. is

$$
\theta(-3)=-\frac{\pi}{4}
$$

EXAMPLE: WHERE IS THE SUN IN THE SKY

\square Then we compute the altitude angle:

$$
\begin{aligned}
& \sin \left(\left.\beta(-3)\right|_{172}\right) \\
& \quad=\cos (0.7) \cos (0.41) \cos \left(-\frac{\pi}{4}\right)+\sin (0.7) \sin (0.41) \\
& \quad=0.75
\end{aligned}
$$

\square Then

$$
\left.\beta(-3)\right|_{172}=0.85 \text { radians }
$$

EXAMPLE: WHERE IS THE SUN IN THE SKY

\square The sine of the azimuth angle is obtained from

$$
\sin \left(\left.\phi(-3)\right|_{172}\right)=\frac{\cos (0.41) \sin \left(-\frac{\pi}{4}\right)}{\cos (0.85)}=-0.9848
$$

\square Two possible values for the azimuth angle are

$$
\left.\phi(-3)\right|_{172}=\sin ^{-1}(-0.9848)=-1.4 \text { radians }
$$

or

$$
\left.\phi(-3)\right|_{172}=\pi-\sin ^{-1}(-0.9848)=4.54 \text { radians }
$$

EXAMPLE: WHERE IS THE SUN IN THE SKY

\square Since

$$
\cos (\theta(-3))=0.707 \text { and } \frac{\tan \left(\left.\delta\right|_{172}\right)}{\tan (\ell)}=0.515
$$

\square Then we can determine

$$
\cos (\theta(-3))>\frac{\tan \left(\left.\delta\right|_{172}\right)}{\tan (\ell)}
$$

\square Thus

$$
\left.\phi(-3)\right|_{172}=-1.4 \text { radians }
$$

IMPORTANCE OF THE ANALYSIS ON SUN'S POSITION IN THE SKY

\square We are now equipped to determine the sun's position in the sky at any time and at any location

To effectively design and analyze solar plants, the sun's position in the sky analysis has some highly significant applications, including to

O build sun path diagram and do shading analysis
O determine sunrise and sunset times
O evaluate a solar panel's optimal position

SUN PATH

SUN PATH DIAGRAM

\square The sun path diagram is a chart used to illustrate the continuous changes of sun's location in the sky at
a specified location over a day's hours
The sun's position in the sky is found for any hour
of the specified day d of the year by reading the
azimuth and altitude angles in the sun path diagram
corresponding to that hour

SUN PATH DIAGRAM FOR $40{ }^{\circ} \mathrm{N}$

SUN PATH DIAGRAM FOR SHADING ANALYSIS

\square In addition to the usefulness of sun path diagrams to help us find the sun's position in the sky, they also have strong practical application in shading analysis at a site - an important issue in $P V$ design due to the strong shadow sensitivity of $P V$ output
\square Modification of the sun path diagram for shading analysis requires a determination of the azimuth and altitude angles of the obstructions

EXAMPLE: SUN PATH DIAGRAM FOR SHADING ANALYSIS

IMPORTANCE OF SHADING ANALYSIS

SHADING ANALYSIS USING SHADOW DIAGRAM

\square In the set-up of a solar field, it is important to design the arrays so that the solar panels do not shade each other
\square In addition to the application of sun path diagrams,
there are other graphical and analytic approaches
for shading analysis; such topics are outside the
scope of the course
ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SUNRISE AND SUNSET

\square An important issue is the determination of the
sunrise/sunset times since solar energy is only
collected during the sunrise to sunset hours
\square We estimate the sunrise/sunset time from the
equation used to compute the solar altitude angle,
which is zero at sunrise and sunset

SUNRISE AND SUNSET

$$
\sin \left(\left.\beta(h)\right|_{d}\right)=0
$$

\square The relationship for the solar angle results in:

$$
\cos (\theta(h))=-\frac{\sin (\ell) \sin \left(\left.\delta\right|_{d}\right)}{\cos (\ell) \cos \left(\left.\delta\right|_{d}\right)}=-\tan (\ell) \tan \left(\left.\delta\right|_{d}\right)
$$

Now we can determine the sunrise solar hour
angle $\left.\kappa_{+}\right|_{d}$ and the sunset hour angle $\left.\kappa_{-}\right|_{d}$ to be: ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SUNRISE AND SUNSET

\square The corresponding sunrise and sunset angles are

$$
\begin{aligned}
& \left.\kappa_{+}\right|_{d}=\cos ^{-1}\left(-\tan (\ell) \tan \left(\left.\delta\right|_{d}\right)\right) \\
& \left.\kappa_{-}\right|_{d}=-\cos ^{-1}\left(-\tan (\ell) \tan \left(\left.\delta\right|_{d}\right)\right)
\end{aligned}
$$

so that the solar times for sunrise/sunset are at

$$
12: 00-\frac{\left.\kappa_{+}\right|_{d}}{\pi / 12} \quad \text { and } \quad 12: 00-\frac{\left.\kappa_{-}\right|_{d}}{\pi / 12}
$$

SUNRISE TIME IN CHAMPAIGN

\square Champaign is located at $\ell=0.7$ radians
On October 22, the solar declination angle is $\mathbf{- 0 . 2 1}$ radians and the sunrise solar hour angle is :

$$
\left.\kappa_{+}\right|_{295}=\cos ^{-1}(-\tan (0.7) \tan (-0.21))=1.39 \text { radians }
$$

The sunrise expressed in solar time is at

$$
12: 00-\frac{1.39}{\pi / 12}=6: 27 \text { a.m. }
$$

SOLAR TIME AND CIVIL TIME

\square So far, we used exclusively solar time measured with reference to solar noon in all our analysis of
insolation and its impacts
\square However, in our daily life we typically use civil or
clock time, which measures the time to align with
the earth's daily rotation over exactly 24 hours

SOLAR TIME AND CIVIL TIME

\square The difference at a specified location on the earth surface between the solar time and the civil time arises from the earth's uneven movement along its orbit of the annual revolution around the sun and the deviation of the local time meridian from the location longitude
\square As such, two distinct adjustments must be made in order to convert between solar time and civil time

SOLAR DAY AND 24-HOUR DAY

\square We examine the difference between a solar day and
the corresponding civil 24-hour day
\square A solar day is defined as the time elapsed between
two successive solar noons

HOW LONG IS A SOLAR DAY

SOLAR DAY

\square The earth's elliptical orbit in its revolution around the sun results in a different duration of each solar day
\square The difference between a solar day and a 24-h day is given by the deviation $\left.e\right|_{d}$ in minutes

$$
\left.e\right|_{d}=9.87 \sin \left(2\left(\left.b\right|_{d}\right)\right)-7.53 \cos \left(\left.b\right|_{d}\right)-1.5 \sin \left(\left.b\right|_{d}\right),
$$

where,

$$
\left.b\right|_{d}=\frac{2 \pi}{364}(d-81) \text { radians }
$$

DIFFERENCE BETWEEN A SOLAR AND A 24-HOUR DAY OVER A YEAR

LOCAL TIME MERIDIAN AND LOCAL LONGITUDE

There are 24 time zones to cover the earth, each with its own time meridian with 15° Iongitude gap between the time meridians of two adjacent zones

The second adjustment deals with the longitude correction for the fact that the clock time at any location within each time zone is defined by its local time meridian which differs from the time zone meridian

LOCAL TIME MERIDIAN AND LOCAL LONGITUDE

\square For every degree of longitude difference, the solar time difference corresponds to

$$
\frac{24 \text { hour } \cdot 60 \mathrm{~m} / \text { hour }}{360^{\circ}}=4 \frac{m}{\text { degree longitude }}
$$

\square The time adjustment due to the degree longitude difference between the specified location and the local time meridian is the product of 4 times the longitude difference expressed in minutes

LOCAL TIME MERIDIAN AND LOCAL LONGITUDE

\square The sum of the adjustment $\left.e\right|_{d}$ and the longitude correction results in:
solar time $=$ clock time $+\left.e\right|_{d}+4 \times \frac{180}{3.14} \times$
(local time meridian - local longitude)
\square This relationship allows the conversion between solar time and civil time at any location on earth

EXAMPLE: SOLAR TIME AND CLOCK TIME

\square Find the clock time of solar noon in Springfield on
July 1 , the $18 \mathbf{2}^{\text {nd }}$ day of the year
\square For $d=182$, we have

$$
\begin{aligned}
\left.b\right|_{182} & =\frac{2 \pi}{364}(182-81)=1.72 \text { radians } \\
\left.e\right|_{182} & =9.87 \sin (2 \times 1.72)-7.53 \cos (1.72)-1.5 \sin (1.72) \\
& =-3.51 \mathrm{mins}
\end{aligned}
$$

EXAMPLE: SOLAR TIME TO CLOCK TIME

\square For Springfield, IL, with longitude 1.55 radians, the
clock time in the central time zone is:

$$
\begin{aligned}
& \text { solar time }-\left.e\right|_{d}-4 \times \frac{180}{3.14} \times \\
& (\text { local time meridian }- \text { local longitude }) \\
= & \text { solar noon-(-3.51)-57((-1.44)-(-1.55)) } \\
= & 11: 38 \text { a.m. }
\end{aligned}
$$

WORLD TIME ZONE MAP

Source: http://www.physicalgeography.net/fundamentals/images/world_time2.gif

CONCLUSION

With the conversion scheme between the solar and clock times, the analysis of solar issues, e.g., the expression of sunrise/sunset on civil time basis, makes the results far more meaningful for use in daily life
\square Such a translation renders the analysis results to be much more concrete for all applications

