ECE 333 – GREEN ELECTRIC ENERGY 16. *PV* Status and Issues

George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana–Champaign

□ *PV* solar system status

□ *PV* technology benefits

□ Key drivers of the *PV* system growth

□ *PV* system installation costs

□ Major challenges facing the *PV* solar resources

2009 - 2016 GLOBAL CUMULATIVE PV CAPACITY

2010 - 2016 WORLDWIDE PV **ELECTRICITY GENERATION**

2016 WORLD STATUS OF THE PV SYSTEMS

□ The addition of more than 76.6 *GW* of new capacity

increased the cumulative worldwide PV capacity to

306.5 *GW* in 2016

Europe with nearly 103 *GW* remains the world's

leading region in terms of cumulative installed

capacity – about 33 % of the world's total PV

capacity – a marked decrease from 40 % in 2015

Source:http://www.solarpowereurope.org/fileadmin/user_upload/documents/WEBINAR/Free_SolarPower_Webinar__Global ______Market_Outlook_2017-2021.pdf

2009 – 2016 EUROPE PV CAPACITY **ANNUAL ADDITIONS**

6

2016 WORLD STATUS OF PV SYSTEMS

- China, US and Japan were the top three nations in terms of PV capacity additions in 2016
- *China* installed 34.5 *GW* of *PV*, an amount higher
 than the sum of the capacity additions of the next
 two countries
- □ US ranks second in capacity additions in 2016 with 14.7 *GW*
- In Japan, 8.6 GW of PV capacity was installed less than the capacity added in 2015

2016 WORLD STATUS OF PV SYSTEMS

- European markets for PV systems slowed down in
 - **2015 and continued this trend in 2016**
- □ The weak 6.7–GW added capacity shrank Europe's
 - share to 33 % of the global PV capacity
- □ For the third time in a row, the *UK* led Europe with
 - its 2-GW addition
- □ Solar *PV* covered more than 7 % of electricity

demand in Italy, Germany and Greece

2016 GLOBAL CUMULATIVE PV CAPACITY

2010 – 2016 PV ELECTRICITY GENERATION BY LEADING NATIONS

JANUARY – APRIL 2016 US AVERAGE MONTHLY PV POWER OUTPUT RATIO

monthly energy output(kWh)

PV system capacity (kW_p)

US PV SOLAR LCOE DEPENDS ON LOCATION

2016 \$ LCOE

JANUARY – APRIL 2016 US PV POWER OUTPUT RATIO VARIANCE

2008 – 2016 EUROPEAN ELECTRICITY GENERATION FROM WIND AND PV

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

world-energy/downloads.html

THE 2016 STATUS OF US PV SYSTEMS

- □ US is a relatively small, but growing, part of the
 - global solar capacity and energy
- □ The 2016 US cumulative PV capacity increased to
 - roughly 40.3 GW, with 14.7 GW of new PV capacity
 - added in 2016
- □ The 14.7 GW PV capacity installed in 2016 was over

2 times the 2015 amount of installed PV capacity

2008 – 2016 US CUMMULATIVE AND INSTALLED PV CAPACITY

US TOP 10 STATES WITH LARGEST PV CAPACITY IN 2016

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

17

US TOP 10 STATES WITH LARGEST PV CAPACITY ADDITIONS IN 2016

2016 US STATUS OF PV SYSTEMS BY STATES

□ More than 1/3 of the US PV capacity installations

were in CA

□ In *Q*3 2016, California became the first state ever to

add more than 1 GW of utility PV in a single quarter

□ *CA*, *NC*, *AZ* and *NV* account for nearly 1/3 of the *US*

cumulative PV capacity

2015 US UTILITY – SCALE SOLAR PROJECTS

THE 5 LARGEST 2016 US PV INSTALLATIONS

plant	location	capacity (MW)	year built	owner	electricity purchaser
Solar Star	Rosamond, CA	579	2015	BHE Renewables	SCE
Desert Sunlight Solar Farm	Riverside County, CA	550	2013	NextEra, Sumitomo	PG&E & SCE
Topaz Solar Farm	San Luis Obispo, CA	550	2014	Mid American Solar	PG&E
Copper Mountain Solar Facility	Boulder City, NV	552	2015	Sempra Generation	PG&E & SC Public Power Authority
Agua Caliente Solar	Yuma County, AZ	290	2014	Mid American Solar, NRG Energy	PG&E

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

world

SOLAR STAR FARM

SOLAR STAR FARM

□ The *Solar Star Farm* is a 579–*MW PV* power station

located in Antelope Valley near Rosamond, CA

Completed in June 2015 by *SunPower*, *Solar Star* was

the world's largest solar farm in terms of capacity

from its 1.7 million solar panels on a 13 km² (3,200

acres) area

SOLAR STAR FARM

Compared to other large plants, *Solar Star* uses a

smaller number of arrays, each array is mounted

on a single-axis tracker and has higher efficiency

Generation of clean electricity form the farm is

expected to power about 255,000 homes and avoid

the annual emission of 570,000 tons of CO₂

TENGGER DESERT SOLAR PARK

TENGGER DESERT SOLAR PARK

□ The world's largest *PV* plant is the 1547-*MW*

Tengger Desert Solar Park, which is located in,

Ningxia, China

□ The *Tengger Desert Solar Park* was built on a 42 km²

(10,378 acres) area and the installation was

completed in 2015

CESTAS SOLAR FARM

CESTAS SOLAR FARM

- □ With a total capacity of 300 MW, Cestas Solar Farm
 - is the largest *PV* plant in Europe
- □ This solar park is located at Cestas, in Southwest
 - France, and is expected to supply electricity to
 - meet the needs of 250,000 people
- □ Electricity is sold under a 20–*year PPA* with the

French utility *EDF* at a price of 105 €/*MWh*

ROOFTOP SOLAR

ROOFTOP SOLAR IN US

The US Energy Information Administration

- (EIA) indicates that rooftop solar electricity
- represents less than 0.47 % of the US electricity

generation

Government incentives aimed at promoting solar

energy have made the installations of rooftop

solar widespread in the Western states – CA, AZ,

ROOFTOP SOLAR IN US

Incentives include tax credits, installation cost re-

bates and net metering for customers with rooftop

solar panels; incentives are location dependent

□ At present 41 states, the *District of Columbia* and 3

territories offer net metering

NET METERING STATUS IN THE US

Under net metering – a billing mechanism that

credits solar energy system owners for the energy

injected into the grid – customers pay only for the

electricity consumed that exceeds the amount fed

into the grid, the so-called *net energy*

ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

33

The implementation of net metering varies from

one jurisdiction to another

□ In *CA*, solar owners receive federal tax credits,

rebates under the CA Solar Initiative, which is

being phased out, and net metering; CA has more

installed capacity than the rest of the country

combined

The payment foregone by the net metered solar

owners are pushing the distribution utilities to

shift the collection of the electricity infrastructure

to the non-solar-owner customers; utilities view

this development as the "death spiral"

RENEWABLE ENERGY CERTIFICATE (*REC*)

The *REC*, also known as the green tag or renewable energy credit is a tradable and non-tangible energy commodity that provides proof of the production of 1–*MWh* electricity from a renewable resource **Every renewable energy resource gets paid for its** production from two sources: the energy is compensated through sales into the electricity markets or via *PPA*s; in addition, the trading of the **RECs**, which represent renewable energy generation is an additional revenue stream

RENEWABLE ENERGY CERTIFICATES (*REC*s)

□ The *REC*s convey the environmental benefits of

the renewable resource electricity and, under a

tracking mechanism, provide direct accounting

to meet the RPS goals in each jurisdiction

□ The *REC*s provide auditable proof of the amount

of renewable energy production injected into the

RECs

However, since the energy and the *REC*s are sold separately and possibly to different buyers, the consumption of the green energy and the proof of the production may be in different jurisdictions **The prices of** *REC***s vary from one jurisdiction to** another and their use across different states are subject to the *non-uniform rules* across the states **RECs** provide buyers and sellers flexibility in trading renewable energy across state borders

KEY *PV* **BENEFITS**

- Residential and commercial PV system installa
 - tions reduce the amount of electricity such
 - customers purchase from the local utility
- As PV systems produce the most power when the insolation is highest at noon, their contributions can reduce the need for the expensive and polluting fossil generation at those operating times

KEY *PV* **BENEFITS**

- **PV** systems as energy resources lessen the
 - nation's dependence on fossil fuels
- The clean and renewable electricity generated by
 - *PV* systems helps reduce the *GHG* emissions a
 - major contributor to global climate change
- □ The growing *PV* industry provides local jobs
 - and economic development opportunities to
 - states and regions to support sustainable energy

THE KEY DRIVERS OF US PV GROWTH

- A most important driver is the *declining costs of installed PV*; in addition, the legislative and regulatory initiatives at the federal and state levels
 - helped the growth of US PV in the past few years
- The federal drivers include
 - *tax incentives* that were established to accelerate the *PV* installations;
 - **O** *loan guarantees* enabled by the 2009 *American*

Recovery and Reinvestment Act (ARRA) allowed the ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE KEY DRIVERS OF US PV GROWTH

US DoE to provide preferential financing support to qualifying renewable energy projects; • *cash grants* provided commercial installations with the alternative to the tax credit in the form of a cash grant – essentially, a rebate At the state level, the drivers include • **RPS** requirements that encourage investments in solar plants to meet the prescribed goals of renewable resource electricity generation

THE KEY DRIVERS OF US PV GROWTH

O *rebate programs* enacted to reduce the total

investment costs of PV systems, especially for residential/commercial PV installations *net metering and TOU rates* that allow customers to offset their monthly electricity

bills by producing their own energy from the

PV systems and even selling excess energy

to the grid

PV INSTALLATION COSTS BY SECTORS

GERMANY PV INSTALLATION COSTS AND SUBSIDIES

2016 INSTALLED COST TREND

- □ The total installed costs for PV systems dropped by 21 – 36 % from 2013 to 2016
- The 2016 utility-scale PV installed cost decline was 20.3 % – the largest among all market segments
- The declining trend for total installed PV costs continued in Q1 2017, hardware costs – and module prices, in particular – declined markedly in Q1 2017 due to an imbalance in the global module

Source: https://www.nrel.gov/docs/fy17osti/68925.pdf page: viii ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PV SOLAR CAPACITY PRICE DECLINE

2016 PV MODULE MANUFACTURING STATUS

The top ten manufacturing companies supplied

36.4 *GW* of *PV* modules in 2016 – a growth of their

market share to 52 % from 48 % in 2015

□ Six of the top ten companies are publicly–listed,

vertically-integrated, China-based crystalline

silicon (*c-Si*) solar panel manufacturers

Source: https://www.nrel.gov/docs/fy17osti/68425.pdf Page: 52

2016 PV MODULE MANUFACTURING STATUS

Trina Solar, First Solar and SunPower are the leaders

in module shipments to meet US market needs

□ In Japan, the leading domestic *PV* module

suppliers are Sharp, Kyocera and Panasonic

The top two suppliers in European *PV* module

market are Schott Solar and SolarWorld in Germany

2016 TOP TEN PV MODULE MANUFACTURERS

Company	Country	
Trina Solar	China	
JA Solar	China	
Hanwha Q-CELLS	Korea	
Jinko Solar	China	
Motech Solar	Taiwan	
First Solar	US	
Longi Lerri	China	
Canadian Solar	Canada	
Yingli Solar	China	
Suntech	China	

2014 PV MODULE MANUFACTURING BY COUNTRY

53

GLOBAL *PV LCOE* **TRENDS**

2017 UNSUBSIDIZED LEVELIZED COSTS OF ENERGY

Source: Lazard Levelized Cost of Energy Analysis, December 2016, pg. 2

RESIDENTIAL *PV LCOE* **BY COUNTRY**

DOE SOLAR PROGRAM GOALS

- □ The US Department of Energy Sunshot Initiative is a
 - national collaborative effort to make solar energy
 - cost-competitive with fossil-fired generation
 - technology by the end of this decade
- **The goals for** *PV* by 2020 are $4 5 \frac{c}{kWh}$ in the
 - residential sector, 5 6 c/kWh in the commercial
 - sector, and $4 6 \frac{c}{kWh}$ in the utility sector

PV **DEVELOPMENT CHALLENGES**

❑ The efficiency of typical PV modules used in

energy production is still rather low

Solar energy is highly uncertain, variable and

intermittent renewable resource and the PV

system electricity production has limited

controllability and dispachability

PV **EFFICIENCY BY MATERIAL**

PV EFFICIENCY BY MATERIAL

Best Research-Cell Efficiencies

Source: https://clcleantechnicacom-wpengine.netdna-ssl.com/files/2014/02/efficiency_chart.png ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PV POWER OUTPUT OF 1 – *MW* CdTe ARRAY IN GERMANY

source: CAISO samples collected on a 5 – minute basis ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PV POWER OUTPUT AT THE NEVADA 70 kW POLYCRYSTALLINE ARRAY

CHRONOLOGICAL PV OUTPUT AND ERCOT LOAD PATTERNS

IMPACTS OF CALIFORNIA ROOFTOP SOLAR

