ECE 333 - Green Electric Energy

Recitation: Economics Applications

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

OUTLINE

\square Time value of money
\square Net present value
\square Internal rate of return
\square Inflation impacts
\square Total PV system cost estimation
\square LCOE determination of a PV system
\square The $P V$ system tax incentive impacts on the $L C O E$
\square The $P V$ system tax benefits and rebate program impacts

ENERGY ECONOMICS CONCEPTS

\square The economic evaluation of a renewable energy resource requires a meaningful quantification of the cost elements

O fixed costs
O variable costs
\square We use engineering economics notions for this purpose since they provide the means to compare on a consistent basis

O two different projects; or,
O the costs with and without a given project

TIME VALUE OF MONEY

\square Basic underlying notion: a dollar today is not the same as a dollar in a year
\square We represent the time value of money by the standard approach of discounted cash flows
\square The notation is

$$
\begin{aligned}
P & =\text { principal } \\
i & =\text { interest value }
\end{aligned}
$$

\square We use the convention that every payment occurs at the end of a period

SIMPLE EXAMPLE

Ioan P for 1 year
repay $P+i P=P(1+i)$ at the end of 1 year
year 0 P
year 1 $P(1+i)$
loan P for n years
year 0 Pyear 1$(1+i) P$repay/reborrowyear 2$(1+i)^{2} P \quad$ repay/reborrowyear 3
$(1+i)^{3} P$ repay/reborrow
year n
$(1+i)^{n} P$ repay

COMPOUND INTEREST

end of period	amount owed	interest for next period	amount owed at the beginning of the next period
0	P	$P i$	$P+P i=P(1+i)$
1	$P(1+i)$	$P(1+i) i$	$P(1+i)+P(1+i) i=P(1+i)^{2}$
2	$P(1+i)^{2}$	$P(1+i)^{2} i$	$P(1+i)^{2}+P(1+i)^{2} i=P(1+i)^{3}$
3	$P(1+i)^{3}$	$P(1+i)^{3} i$	$P(1+i)^{3}+P(1+i)^{3} i=P(1+i)^{4}$
\vdots	\vdots	$P(1+i)^{n-1}$	$P(1+i)^{n-1} i$
$n-1$	$P(1+i)^{n}$		
n			

the value in the last column at the e.o.p. ($k-1$) provides the amount in the first column for the period k
ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TERMINOLOGY

end of n periods

TERMINOLOGY

\square We call $(1+i)^{n}$ the single payment compound amount factor
\square We define

$$
\beta \triangleq(1+i)^{-1}
$$

\square Then,

$$
\beta^{n}=(1+i)^{-n}
$$

is the single payment present worth factor
$\square F$ denotes the future worth; P denotes the present worth or present value at interest i of a future sum F

CASH FLOWS

\square A cash-flow is a transfer of an amount $\boldsymbol{A}_{\boldsymbol{t}}$ from
one entity to another at the e.o.p. t
\square We consider the cash - flow set $\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{n}\right\}$
\square This set corresponds to the set of the transfers in
the periods $\{0,1,2, \ldots, n\}$

CASH FLOWS

\square We associate the transfer A_{t} at the e.o.p. t,
$t=0,1,2, \ldots, n$
\square The convention for cash flows is

$$
\begin{aligned}
& + \text { inflow } \\
& \text { - outflow }
\end{aligned}
$$

\square Each cash flow requires the specification of:
O amount;
O time; and,
O sign

EXAMPLE

Consider an investment that returns

$\$ 1,000$ at the e.o.y. 1
$\$ 2,000$ at the e.o.y. 2

$$
i=10 \%
$$

\square We evaluate P

$$
\begin{aligned}
P & =\$ 1,000 \underbrace{(1+.1)^{-1}}_{\beta}+\$ 2,000 \underbrace{(1+.1)^{-2}}_{\beta^{2}} \\
& =\$ 909.9+\$ 1,652.09 \\
& =\$ 2,561.98
\end{aligned}
$$

EXAMPLE

U We review this example with a cash-flow diagram

\$ 2,561.98

NET PRESENT VALUE

\square Next, suppose that this investment requires $\$ 2,400$ now and so at 10% we say that the investment has a net present value or

$$
N P V=\$ 2,561.98-\$ 2,400=\$ 161.98
$$

CASH FLOWS : FUTURE WORTH

\square Given a cash-flow set $\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{n}\right\}$ we define the future worth F_{n} of the cash flow set at the e.o.y. n as

CASH FLOWS : FUTURE WORTH

\square Note that each cash flow A_{t} in the $(n+1)$ period set contributes differently to $\boldsymbol{F}_{\boldsymbol{n}}$:

$$
\begin{array}{ccc}
A_{0} & \rightarrow & A_{0}(1+i)^{n} \\
A_{1} & \rightarrow & A_{1}(1+i)^{n-1} \\
A_{2} & \rightarrow & A_{2}(1+i)^{n-2} \\
\vdots & & \vdots \\
A_{t} & \rightarrow & A_{t}(1+i)^{n-t} \\
\vdots & & \vdots \\
A_{n} & \rightarrow & A_{n}
\end{array}
$$

CASH FLOWS: PRESENT WORTH

\square We define the present worth P of the cash - flow

set as

$$
P=\sum_{t=0}^{n} A_{t} \beta^{t}=\sum_{t=0}^{n} A_{t}(1+i)^{-t}
$$

\square Note that

$$
\begin{aligned}
P & =\sum_{t=0}^{n} A_{t}(1+i)^{-t} \\
& =\sum_{t=0}^{n} A_{t}(1+i)^{-t} \underbrace{(1+i)^{n}(1+i)^{-n}}_{1}
\end{aligned}
$$

CASH FLOWS

$$
\begin{aligned}
& =\underbrace{(1+i)^{-n}}_{\beta^{n}} \underbrace{\sum_{t=0}^{n} A_{t}(1+i)^{n-t}}_{F_{n}} \\
& =\beta^{n} F_{n}
\end{aligned}
$$

or, equivalently,

$$
F_{n}=(1+i)^{n} P
$$

UNIFORM CASH-FLOW SET

\square Consider the cash - flow set $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ with

$$
A_{t}=A \quad t=1,2, \ldots, n
$$

\square Such a set is called an equal payment cash flow set
\square We compute the present worth at $t=0$
$P=\sum_{t=1}^{n} A_{t} \beta^{t}=A \sum_{t=1}^{n} \beta^{t}=A \beta\left[1+\beta+\beta^{2}+\ldots+\beta^{n-1}\right]$

UNIFORM CASH-FLOW SET

\square Now, for $0<\beta<1$, we have the identity

$$
\sum_{j=0}^{\infty} \beta^{j}=\frac{1}{1-\beta}
$$

\square It follows that

$$
\sum_{j=0}^{\infty} \beta^{j}
$$

$$
\begin{aligned}
1+\beta+\ldots+\beta^{n-1} & =\sum_{j=0}^{\infty} \beta^{j}-\beta^{n}[\overbrace{1+\beta+\beta^{2}+\ldots+\beta^{n-1}+\ldots}] \\
& =\left(1-\beta^{n}\right) \sum_{j=0}^{\infty} \beta^{j}
\end{aligned}
$$

UNIFORM CASH-FLOW SET

$$
=\frac{1-\beta^{n}}{1-\beta}
$$

- Therefore

$$
P=A \beta \frac{1-\beta^{n}}{1-\beta}
$$

- But

$$
\beta=(1+d)^{-1}
$$

and so

ECE $333 \subset 2002$ - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

UNIFORM CASH-FLOW SET

$$
1-\beta=1-\frac{1}{1+d}=\frac{d}{1+d}=\beta d
$$

- We write

$$
P=A \frac{1-\beta^{n}}{d}
$$

and we call $\frac{1-\beta^{n}}{d}$ the equal payment series

present worth factor
ECE $333 \bigcirc 2002$ - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EQUIVALENCE

\square We consider two cash - flow sets

$\left\{A_{t}^{a}: t=0,1,2, \ldots, n\right\}$ and $\left\{A_{t}^{b}: t=0,1,2, \ldots, n\right\}$
under a given discount rate d
\square We say $\left\{A_{t}^{a}\right\}$ and $\left\{A_{t}^{b}\right\}$ are equivalent cash-flow
sets if and only if

$$
F_{m} \text { of }\left\{A_{t}^{a}\right\}=F_{m} \text { of }\left\{A_{t}^{b}\right\} \text { for each value of } m
$$

EQUIVALENCE EXAMPLE

\square Consider the two cash - flow sets under $d=7 \%$

ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EQUIVALENCE

We compute

$$
P^{a}=2,000 \sum_{t=3}^{7} \beta^{t}=7,162.55
$$

and

$$
P^{b}=8,200.40 \quad \beta^{2}=7,162.55
$$

\square Therefore, $\left\{A_{t}^{a}\right\}$ and $\left\{A_{t}^{b}\right\}$ are equivalent cash
flow sets under $d=7 \%$

DISCOUNT RATE

\square The interest rate i is, typically, referred to as the discount rate and is denoted by d
\square In converting the future amount F to the present worth P we can view the discount rate as the interest rate that may be earned from the best investment alternative
\square A postulated savings of $\$ 10,000$ in a project in 5 years is worth at present

$$
P=F_{5} \beta^{5}=10,000(1+d)^{-5}
$$

DISCOUNT RATE

\square For $\boldsymbol{d}=0.1$

$$
P=\$ 6,201
$$

while for $\boldsymbol{d}=\mathbf{0 . 2}$

$$
P=\$ 4,019
$$

\square In general, for a specified future worth, the lower
the discount factor, the higher the present worth is

INTERNAL RATE OF RETURN

We consider a cash-flow set

$$
\left\{A_{t}=A: t=0,1,2, \ldots\right\}
$$

\square The value of d for which

$$
P-\sum_{t=0}^{n} A_{t} \beta^{t}=0
$$

is called the internal rate of return (IRR)
\square The IRR is a measure of how fast we recover an investment, or stated differently, the speed with or rate at which the returns recover an investment

EXAMPLE: INTERNAL RATE OF RETURN

\square Consider the following cash-flow set

INTERNAL RATE OF RETURN

\square The present value

$$
P=-30,000+6,000 \frac{1-\beta^{8}}{d}=0
$$

has the solution

$$
d \approx 12 \%
$$

\square The interpretation is that under a 12% discount rate,
the present value of the cash - flow set is 0 and so
$d \approx 12 \%$ is the $I R R$ for the given cash - flow set
\square Consider an infinite horizon simple investment

- Therefore

ECE $333 \bigcirc 2002$ - $\mathbf{2 0 1 7}$ George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

\square Consider

$$
\begin{aligned}
& I=\$ 1,000 \\
& A=\$ 200
\end{aligned}
$$

and

$$
d=20 \%
$$

we interpret that the returns capture 20% of the investment each year or equivalently that we have a simple payback period of 5 years

IRR TABLE

Life (years)	9%	11%	13%	15%	17%	19%	21%	23%	25%	27%	29%	31%	33%	35%	37%	39%
1	0.92	0.90	0.88	0.87	0.85	0.84	0.83	0.81	0.80	0.79	0.78	0.76	0.75	0.74	0.73	0.72
2	1.76	1.71	1.67	1.63	1.59	1.55	1.51	1.47	1.44	1.41	1.38	1.35	1.32	1.29	1.26	1.24
3	2.53	2.44	2.36	2.28	2.21	2.14	2.07	2.01	1.95	1.90	1.84	1.79	1.74	1.70	1.65	1.61
4	3.24	3.10	2.97	2.85	2.74	2.64	2.54	2.45	2.36	2.28	2.20	2.13	2.06	2.00	1.94	1.88
5	3.89	3.70	3.52	3.35	3.20	3.06	2.93	2.80	2.69	2.58	2.48	2.39	2.30	2.22	2.14	2.07
6	4.49	4.23	4.00	3.78	3.59	3.41	3.24	3.09	2.95	2.82	2.70	2.59	2.48	2.39	2.29	2.21
7	5.03	4.71	4.42	4.16	3.92	3.71	3.51	3.33	3.16	3.01	2.87	2.74	2.62	2.51	2.40	2.31
8	5.53	5.15	4.80	4.49	4.21	3.95	3.73	3.52	3.33	3.16	3.00	2.85	2.72	2.60	2.48	2.38
9	6.00	5.54	5.13	4.77	4.45	4.16	3.91	3.67	3.46	3.27	3.10	2.94	2.80	2.67	2.54	2.43
10	6.42	5.89	5.43	5.02	4.66	4.34	4.05	3.80	3.57	3.36	3.18	3.01	2.86	2.72	2.59	2.47
15	8.06	7.19	6.46	5.85	5.32	4.88	4.49	4.15	3.86	3.60	3.37	3.17	2.99	2.83	2.68	2.55
20	9.13	7.96	7.02	6.26	5.63	5.10	4.66	4.28	3.95	3.67	3.43	3.21	3.02	2.85	2.70	2.56
25	9.82	8.42	7.33	6.46	5.77	5.20	4.72	4.32	3.98	3.69	3.44	3.22	3.03	2.86	2.70	2.56
30	10.27	8.69	7.50	6.57	5.83	5.23	4.75	4.34	4.00	3.70	3.45	3.22	3.03	2.86	2.70	2.56

EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

\square An energy efficiency retrofit of a commercial site reduces the HVAC load consumption to 0.8 GWh from 2.3 GWh and the peak demand by 0.15 MW
\square Electricity costs are $60 \$ / M W h$ and demand charges are $7,000 \$ /(M W-m o)$ and these prices escalate at an annual rate of $j=5 \%$

The retrofit requires a $\$ \mathbf{5 0 0 , 0 0 0}$ investment today and is planned to have a 15 -year lifetime

EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

\square We evaluate the IRR for this project

The annual savings are
energy : (2.3-0.8)GWh $(60 \$ / M W h)=\$ 90,000$
demand $:(.15 M W)(7000 \$ /(M W h-m o)) 12 m o=\$ 12,600$
total $: 90,000+12,600=\$ 102,600$
\square The $I R R$ is the value of d^{\prime} that results in

EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

$$
0=-500,000+102,600 \frac{1-\left(\beta^{\prime}\right)^{15}}{d^{\prime}}
$$

\square The table look up produces the d^{\prime} of 19% and
with inflation factored in, we have

$$
\begin{aligned}
(1+d) & =(1+j)\left(1+d^{\prime}\right) \\
& =(1.05)(1.19) \\
& =1.25
\end{aligned}
$$

resulting in a combined IRR of 25%

INFLATION IMPACTS

\square Inflation is a general increase in the level of prices
in an economy; equivalently, we may view inflation as a general decline in the value of the purchasing power of money
\square Inflation is measured using prices: different products may have distinct escalation rates
\square Typically, indices such as the CPI - the consumer price index - use a market basket of goods and

INFLATION IMPACTS

services as a proxy for the entire US economy

O reference basis is the year 1967 with the price of $\$ 100$ for the basket $\longrightarrow L_{0}$
O in the year 1990, the same basket cost
$\$ 374 \longrightarrow L_{21}$
O the average inflation rate \boldsymbol{j} is estimated from

$$
(1+j)^{23}=\frac{374}{100}=3.74
$$

and so

$$
j=(3.74)^{\frac{1}{23}}-1 \approx 0.059
$$

INFLATION RATE

The inflation rate contributes to the overall market interest rate i, sometimes called the combined interest rate
\square We write, using d for i

interest rate
rate
rate

INFLATION

We obtain the following identities

$$
d^{\prime}=\frac{d-j}{1+j}
$$

and

$$
j=\frac{d-d^{\prime}}{1+d^{\prime}}
$$

CASH - FLOWS INCORPORATING INFLATION

\square We express the cash - flow in the set
$\left\{A_{i}: t=0,1,2, \ldots, n\right\}$ in then current dollars
The following is synonymous terminology
current \equiv then current \equiv inflated \equiv after inflation
\square An indexed or constant - worth cash - flow is one
that does not explicitly take inflation into

CASH - FLOWS INCORPORATING INFLATION

account, i.e., whatever amount in current inflated
dollars will buy the same goods and services as
in the reference year, typically, the year 0
\square The following terms are synonymous
constant \equiv indexed \equiv inflation free \equiv before inflation
and we use them interchangeably
ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CASH - FLOWS INCORPORATING INFLATION

\square We define the set of constant currency flows

$$
\left\{W_{t}: t=0,1,2, \ldots, n\right\}
$$

corresponding to the set

$$
\left\{A_{t}: t=0,1,2, \ldots, n\right\}
$$

CASH - FLOWS INCORPORATING INFLATION

We use the relationship

$$
A_{t}=W_{t}(1+j)^{t}
$$

or equivalently

$$
W_{t}=A_{t}(1+j)^{-t}
$$

with W_{t} expressed in reference year 0 (today's)

dollars

CASH - FLOWS INCORPORATING INFLATION

We have

$$
\begin{aligned}
P & =\sum_{t=0}^{n} A_{t} \beta^{t} \\
& =\sum_{t=0}^{n} W_{t}(i+j)^{t}(i+d)^{-t} \\
& =\sum_{t=0}^{n} W_{t}(i+j)^{t}(i+j)^{-t}\left(i+d^{\prime}\right)^{-t} \\
& =\sum_{t=0}^{n} W_{t}\left(i+d^{\prime}\right)^{-t}
\end{aligned}
$$

CASH - FLOWS INCORPORATING INFLATION

\square Therefore, the real interest rate d^{\prime} is used to discount the indexed cash - flows
\square In summary,
we discount current dollar cash-flow at d

we discount indexed dollar cash-flow at d^{\prime}

CASH - FLOWS INCORPORATING INFLATION

\square Whenever inflation is taken into account, it is con-
venient to carry out the analysis in present worth
rather than future worth or on a cash-flow basis
\square Under inflation $(j>0)$, it follows that a uniform set of cash flows $\left\{A_{t}=A: t=1,2, \ldots, n\right\}$ implies a real decline in the cash flows

EXAMPLE: INFLATION CALCULATIONS

\square Consider an annual inflation rate of $j=4 \%$ and
the cost for a piece of equipment is assumed
constant for the next 3 years in terms of today's $\$$

$$
W_{0}=W_{1}=W_{2}=W_{3}=\$ 1,000
$$

\square The corresponding cash flows in current \$ are

$$
\begin{aligned}
& A_{0}=\$ 1,000 \\
& A_{1}=1,000(1+.04)=\$ 1,040
\end{aligned}
$$

EXAMPLE: INFLATION CALCULATIONS

$$
\begin{aligned}
& A_{2}=1,000(1+.04)^{2}=\$ 1,081.60 \\
& A_{3}=1,000(1+.04)^{3}=\$ 1,124.86
\end{aligned}
$$

\square The interpretation of A_{3} is that under 4% inflation,
$\$ 1,125$ in 3 years will have the same value as
$\$ 1,000$ today; it must not be confused with the

present worth calculation

MOTOR ASSESSMENT EXAMPLE

\square For the motor a or b purchase example, we
consider the escalation of electricity at an annual
rate of $\boldsymbol{j}=5 \%$
\square We compute the $N P V$ taking into account the inflation (price escalation of 5%) and $d=10 \%$
\square Then,

$$
d^{\prime}=\frac{d-j}{1+j}=\frac{.10-.05}{1+.05}=\frac{.05}{1.05}=0.04762
$$

MOTOR ASSESSMENT

\square The savings of $\$ 192$ per year are in constant dollars

$$
P_{\text {savings }}=\sum_{t=1}^{20} W_{t}\left(1+d^{\prime}\right)^{-t} 0.04762
$$

and so

$$
P_{\text {savings }}=\$ 2,442
$$

\square The total savings are

$$
P=-500+P_{\text {savings }}=\$ 1,942
$$

which are larger than those of $\$ 1,135$ without electricity price escalation

ANNUALIZED INVESTMENT

A capital investment, such as a renewable energy project, requires funds, either borrowed from a bank, or obtained from investors, or taken from the owner's own accounts

Conceptually, we may view the investment as a Ioan that converts the investment costs into a series of equal annual payments to pay back the Ioan with the interest

ANNUALIZED INVESTMENT

For this purpose, we use a uniform cash-flow
set and use the relation

present
worth
equal
equal payment series
present worth factor

ANNUALIZED INVESTMENT

\square Therefore, the equal payment is given by

capital recovery factor
\square The capital recovery factor measures the speed
with which the initial investment is repaid

EXAMPLE: EFFICIENT AIR CONDITIONER

\square An efficiency upgrade of an air conditioner
incurs a \$ 1,000 investment and results in savings of \$ $\mathbf{2 0 0}$ per year
\square The $\$ 1,000$ is obtained as a 10 - year loan repaid at 7% interest
\square The repayment on the loan is done as a uniform cash flow

$$
A=1,000 \frac{0.07}{1-\beta^{10}}=\$ 142.38
$$

EXAMPLE: EFFICIENT AIR CONDITIONER

\square The annual net savings are

$$
200-142.38=\$ 57.62
$$

and not only are the savings sufficient to pay
back the Ioan in 10 years, they also provide a
yearly surplus of $\$ \mathbf{5 7 . 6 2}$
\square The benefits/costs ratio is

$$
\frac{200}{142.38}=1.4
$$

EXAMPLE: PV SYSTEM

\square We consider a $3-k W P V$ system whose capacity
factor $\kappa=0.25$
\square The investment incurred $\$ 10,000$ and the funds
are obtained as a 20 - year 6% loan
\square The annual loan repayments are

$$
A=10,000 \frac{0.06}{1-\boldsymbol{\beta}^{20}}=10,000(\mathbf{0 . 0 8 7 2})=\$ 872
$$

EXAMPLE: PV SYSTEM

\square The annual energy generated is

$$
(3)(0.25)(8,760)=6,570 \mathrm{kWh}
$$

We can compute the unit costs of electricity for
break-even operation to be

$$
\frac{872}{6,570}=0.133 \$ / k W h
$$

PV SYSTEM TOTAL COST ESTIMATION

\square The PV system for a Boulder house is designed to generate roughly 4,000 kWh annually
\square The key cost components are

component	costs $(\$)$
$P V / \mathrm{s}$	$4.20 / W(D C)$
inverter	$1.20 / W(D C)$
tracker	$400+100 / \mathrm{m}^{2}$
installation	3,800

EXAMPLE: BOULDER HOUSE PV SYSTEM

\square We assume the PVs have a 12% efficiency and
the inverter efficiency is 75%

We use the solar insolation tables in Appendix G
to obtain the average daily insolation for a fixed
array
\square We compare the costs of a fixed array with a-15
tilt angle and those with a single - axis tracker
ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: BOULDER HOUSE PV SYSTEM

\square The solar insolation tables in Appendix G indicate
the average daily insolation in Boulder for a fixed
array to be $5.4 \mathrm{kWh} / \mathrm{m}^{\mathbf{2}}-\mathrm{d}$
\square We interpret the insolation as $5.4 \mathrm{~h} / \mathrm{d}$ of 1 sun
\square We compute

$$
P_{D C, s t c}=\frac{4,000}{(0.75)(5.4)(365)}=2.71 \mathrm{k} W_{p}
$$

EXAMPLE: BOULDER HOUSE PV SYSTEM

The costs of the PVs and the inverters are

$$
\text { costs of } P V s=4.20 \times 2,710=\$ 11,365
$$

costs of inverters $=1.20 \times 2,710=\$ 3,247$
\square Given the 12% efficiency of the $P V s$, the array
area required is

$$
\text { area }=\frac{P_{D C, s t c}}{\left(1 \mathrm{~kW} / \mathrm{m}^{2}\right) \eta}=\frac{2.71}{1 \times 0.12}=22.6 \mathrm{~m}^{2}
$$

EXAMPLE: BOULDER HOUSE PV SYSTEM

We next consider the average daily insolation in

Boulder with a single-axis tracker of $7.2 \mathrm{kWh} / \mathrm{m}^{2}-d$,
i.e., $7.2 \mathrm{~h} / \mathrm{d}$ of full sun - as given in Appendix G
\square We compute

$$
p_{D C, s t c}=\frac{4,000}{(0.75)(7.2)(365)}=2.03 \mathrm{~kW} W_{p}
$$

\square The costs of the PVs and the inverters are

EXAMPLE: BOULDER HOUSE PV SYSTEM

costs of $P V s=4.20 \times 2,030=\$ 8,524$
costs of inverters $=1.20 \times 2,030=\$ 2,436$
\square Thus the area for the system is

$$
\text { area }=\frac{P_{D C, s t c}}{\left(1 \mathrm{~kW} / \mathrm{m}^{2}\right) \eta}=\frac{2.03}{1 \times 0.12}=16.9 \mathrm{~m}^{2}
$$

\square The tracker costs are
costs of trackers $=400+16.9 \times 100=\$ 2,090$

EXAMPLE: BOULDER HOUSE PV SYSTEM

element	fixed tilt array	single-axis tracker
PVs	$\$ 11,365$	$\$ 8,524$
inverter	$\$ 3,247$	$\$ 2,436$
tracker	-	$\$ 2,090$
installation	$\$ 3,800$	$\$ 3,800$
total	$\$ \mathbf{1 8 , 4 1 2}$	$\$ 16,850$

ECE $333 \bigcirc 2002$ - $\mathbf{2 0 1 7}$ George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: BOULDER HOUSE PV SYSTEM

The installation of the trackers increases the

 average daily insolation received at the $P V$ panels and decreases the area required for the system\square While the trackers add $\$ 2,090$ to the fixed costs of
the $P V$ system, the $P V$ system investment costs with the trackers are nevertheless markedly below those of the fixed panels

REVIEW OF THE c.r.f.

\square The capital recovery factor is the scheme we use to determine the financing costs of a $P V$ project
\square A loan of P at interest rate i may be recovered over n years through fixed annual payments of

EXAMPLE: LCOE FOR THE PV SYSTEMS

\square We illustrate the determination of the LCOE with
a PV system example with the following features:
Oinstallation costs: \$ 7 million
Oannual O\&M costs: \$ 35,000
Oannual land lease fee: $\$ \mathbf{4 0 , 0 0 0}$
Oannual energy production: 4 GWh
O9 \%, 20 - year Ioan

ECE 333 © 2002 - 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: LCOE FOR THE PV SYSTEMS

$$
\text { c.r.f. }(9 \%, 20 y)=\frac{(0.09)(1+0.09)^{20}}{(1+0.09)^{20}-1}=0.1095 y^{-1}
$$

\square The c.r.f. results in the annual amortized fixed costs of

$$
7,000,000 \times 0.1095=\$ 766,500
$$

\square Then we can evaluate the $L C O E$ using

$$
\frac{766,500+35,000+40,000}{4,000,000}=0.21 \frac{\$}{k W h}
$$

FINANCIAL INCENTIVES FOR SOLAR

A significant factor that was ignored in the cost
calculation in the previous example is the
impacts of the financial and tax incentives
\square Many solar installations are eligible for federal
and state tax incentives for the purchase and implementation of $P V$ systems

FEDERAL BUSINESS ENERGY INVESTMENT TAX CREDIT (ITC)

State:	Federal
Incentive Type:	Corporate Tax Credit
Administrator:	U.S. Internal Revenue Service
Expiration Date:	Varies by technology, see below
Eligible Renewable/Other Technologies:	Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Geothermal Heat Pumps, Municipal Solid Waste, Combined Heat \& Power, Fuel Cells using Non-Renewable Fuels, Tidal, Wind (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels, Microturbines
Applicable Sectors:	Commercial, Industrial, Investor-Owned Utility, Cooperative Utilities, Agricultural
Incentive Amount:	30% for solar, fuel cells, small wind* 10% for geothermal, microturbines and CHP
Maximum Incentive:	Fuel cells: $\$ 1,500$ per 0.5 kW Microturbines: $\$ 200$ per kW Small wind turbines placed in service $10 / 4 / 08-12 / 31 / 08: ~ \$ 4,000$ Small wind turbines placed in service after 12/31/08: no limit All other eligible technologies: no limit

Source: http://programs.dsireusa.org/system/program/detail/658

TAX INCENTIVES FOR SOLAR

\square The ITC originally enacted in the Energy Policy Act of 2005 for solar has been renewed numerous
times and is currently set at 30% of the initial
investment
\square The ITC supports electricity generated by solar systems on residential and commercial properties

EXAMPLE: TAX INCENTIVES FOR SOLAR

\square We illustrate the ITC impacts on the LCOE in the previous $P V$ system example
\square With the ITC, the initial investment tax savings amount to $0.3 \times 7,000,000=\$ 2,100,000$
\square The resulting annual amortized fixed costs are $(1-0.3) \times 7,000,000 \times 0.1095=\$ 536,550$

EXAMPLE: TAX INCENTIVES FOR SOLAR

\square Then we can evaluate the $L C O E$ using

$$
\frac{536,550+35,000+40,000}{4,000,000}=0.15 \frac{\$}{k W h}
$$

\square We observe that the introduction of the ITC
results in a $\mathbf{6} \phi / k W h$ reduction in the $L C O E$
\square This corresponds to a 27% reduction in the
LCOE

TAX BENEFITS FOR SOLAR

The use of a home loan to finance the installation

of a PV system has an important impact on the
$P V$ electricity price in light of the income tax
benefits, which depend on the homeowner
marginal tax bracket (MTB)

TAX BENEFIT FOR SOLAR

\square For a loan over several years, almost all of the first year payments constitute the interest due, with a very small contribution to the reduction of the Ioan principal, while the opposite allocation occurs towards the end of the loan life
\square In the first year, interest is owed on the entire amount of the loan and the tax benefits are

$$
i \times \operatorname{loan} \times M T B
$$

EXAMPLE: TAX BENEFIT FOR SOLAR

- Consider a 30 - year $\mathbf{4 . 5} \%$ Ioan to install a
residential $3.36-k W_{p} P V$ system in Chicago, with
the annual energy of $4,942 \mathrm{kWh}$
\square The c.r.f. for the loan is

$$
\frac{(0.045)(1+0.045)^{30}}{(1+0.045)^{30}-1}=0.06139 y^{-1}
$$

EXAMPLE: TAX BENEFIT FOR SOLAR

The residential $P V$ system costs $\$ 19,186$ and the
annual loan payment is

$$
19,186 \times 0.06139=\$ 1,178
$$

Thus the cost of $P V$ electricity in the first year is

$$
\frac{1,178}{4,932}=0.239 \frac{\$}{k W h}
$$

\square During the first year, the owner pays the annual interest on the $\$ 19,186$ loan in the amount of

ECE 333 © 2002-2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: TAX BENEFIT FOR SOLAR

first year interest $=19,186 \times 0.045=\$ 863$
\square We assume the homeowner is in the 25% MTB
and determine the first year tax savings to be

$$
863 \times 0.25=\$ 216
$$

which reduce the cost of $P V$ electricity to

$$
\frac{1,178-216}{4,932}=0.192 \frac{\$}{k W h}
$$

REBATES

\square Many states and certain jurisdictions have intro-
duced rebate programs to promote investments
in solar systems
\square A rebate reduces the total investment required
by, in effect, returning some of the costs of the
$P V$ system installation to the investor:

$$
\text { reduced costs }=\text { original costs }- \text { rebate }
$$

ILLINOIS SOLAR AND WIND ENERGY REBATE PROGRAM

$\left.\begin{array}{|l|l|}\hline \text { Budget: } & \text { \$2.5 million } \\ \hline \text { Start Date: } & 12 / 16 / 1997 \\ \hline \text { Expiration Date: } & 10 / 10 / 2014 \text { (current applications) } \\ \hline \text { Eligible Renewable/Other Technologies: } & \text { Solar Water Heat, Solar Photovoltaics, Wind (All), Solar Pool Heating, Wind (Small) }\end{array}\left|\begin{array}{l}\text { Commercial, Industrial, Local Government, Nonprofit, Residential, Schools, State } \\ \text { Government, Federal Government }\end{array}\right| \begin{array}{l}\text { Residential PV: \$1.50/watt or } 25 \% \text { of project costs } \\ \hline \text { Commercial PV: } \$ 1.25 / \text { watt or } 25 \% \text { of project costs } \\ \text { Nonprofits and Public Sector PV: } \$ 2.50 / \text { watt or } 40 \% \text { of project costs } \\ \text { Residential and Commercial Wind (SWCC certified): } \$ 1.75 / \text { watt or } 30 \% \text { of project costs } \\ \text { Nonprofits and Public Sector Wind (SWCC certified): } \$ 2.60 / \text { watt or } 40 \% \text { of project costs } \\ \text { Wind energy systems that are not SWCC certified: } \$ 1.00 / \text { watt } \\ \text { Residential and Commercial Solar Thermal: } 30 \% \text { of eligible project costs } \\ \text { Nonprofits and Public Sector Solar Thermal: } 40 \% \text { of eligible project costs }\end{array}\right\}$

EXAMPLE: REBATES

\square For instance, if the total investment costs in the previous example are reduced by the 25% rebate under the Illinois solar and wind energy program,
we can determine the reduced annual payment

$$
19,186 \times(1-0.25) \times 0.06139=\$ 883
$$

\square Then the first year interest reduces to

EXAMPLE: REBATES

$$
19,186 \times(1-0.25) \times 0.045=\$ 648
$$

\square Therefore the first year tax savings are given by

$$
648 \times 0.25=\$ 162
$$

\square Consequently the cost of $P V$ electricity in the first
year reduces to

$$
\frac{883-162}{4,932}=0.146 \frac{\$}{k W h}
$$

