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q Time value of money
q Net present value
q Internal rate of return
q Inflation impacts

q Total PV system cost estimation 

q LCOE determination of a PV system

q The PV system tax incentive impacts on the LCOE

q The PV system tax benefits and rebate program 
impacts 

OUTLINE



ECE 333 © 2002 – 2017 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.           3

q The economic evaluation of a renewable energy 
resource requires a meaningful quantification of 
the cost elements
m fixed costs
m variable costs 

q We use engineering economics notions for this 
purpose since they provide the means to 
compare on a consistent basis
m two different projects; or,
m the costs with and without a given project

ENERGY  ECONOMICS  CONCEPTS
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q Basic underlying notion: a dollar today is not the 
same as a dollar in a year

q We represent the time value of money by the 
standard approach of discounted cash flows

q The notation is
P =   principal 

i =   interest value 

q We use the convention that every payment 
occurs at the end of a period

TIME  VALUE  OF  MONEY
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SIMPLE  EXAMPLE
loan P for 1 year
repay                               at the end of 1 year
year 0 P
year 1 
loan P for n years
year 0 P
year 1 repay/reborrow
year 2 repay/reborrow
year 3 repay/reborrow
.

year n repay
!  !  !

(1 )P iP P i+ = +

  P (1 + i)

  (1 + i) P

  (1 + i)2 P

  (1 + i)3 P

  (1 + i)n P
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COMPOUND  INTEREST

end of 
period

amount owed
interest for              
next period

amount owed at the beginning of 
the next period

0

1

2

3

n–1

n

2(1 )P i+

(1 ) nP i+

 !  !

the value in the last column at the e.o.p. (k-1) provides the 
amount in the first column for the period k

1 1(1 ) (1 ) (1 )n n nP i P i i P i− −+ + + = +1(1 ) nP i −+

3(1 )P i i+

1(1 ) nP i i−+

3 3 4(1 ) (1 ) (1 )P i P i i P i+ + + = +3(1 )P i+

2(1 )P i i+ 2 2 3(1 ) (1 ) (1 )P i P i i P i+ + + = +

2(1 ) (1 ) (1 )P i P i i P i+ + + = +(1 )P i+

(1 )P P i P i+ = +

(1 )P i i+

P iP
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TERMINOLOGY

  F = P 1 + i( ) n

compound 
interest

lump sum repayment at the 

end of  n periods

need not be integer-valued
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TERMINOLOGY

q We call           the single payment compound 
amount factor

q We define

q Then,

is the single payment present worth factor
q F denotes the future worth; P denotes the present 

worth or present value at interest i of a future sum F

   β ! 1 + i( ) −1

  β
n = 1 + i( ) − n

  1 + i( )n
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CASH FLOWS

q A cash – flow is a transfer of an amount  At from 

one entity to another at the e.o.p. t

q We consider the cash – flow set 

q This set corresponds to the set of the transfers in 

the periods 

  A0 , A1, A2 , ... , An{ }

  0,1,2, ... , n{ }
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CASH FLOWS
q We associate the transfer  At at the e.o.p. t, 

q The convention for cash flows is 
+ inflow

− outflow

q Each cash flow requires the specification of:
m amount;
m time; and,
m sign

  t = 0,1,2, ... , n
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EXAMPLE
q Consider an investment that returns

$ 1,000 at the e.o.y. 1

$ 2,000 at the e.o.y. 2

i =  10%

rate at which 
money can be 
freely lent or 

borrowed

   

P = $ 1,000 1 + .1( ) − 1

β
! "# $#

+ $ 2,000 1 + .1( ) − 2

β 2
! "# $#

= $ 909.9 + $ 1,652.09

= $ 2,561.98

q We evaluate P
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EXAMPLE

q We review this example with a cash – flow diagram

0

$ 2,561.98

1 2

$ 1,000

$ 2,000

year
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NET  PRESENT  VALUE

q Next, suppose that this investment requires         
$ 2,400 now and so at 10 % we say that the 
investment has a net present value or

NPV  =  $ 2,561.98  – $ 2,400   =   $ 161.98

0 1 2

$ 2,400.00

$ 1,000

$ 2,000

year

NPV
$ 161.98
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CASH FLOWS : FUTURE  WORTH

q Given a cash – flow set we 
define the future worth Fn of the cash flow set at 
the e.o.y. n as 

  A0 , A1, A2 , ... , An{ }

  
Fn = At 1 + i( ) n− t

t=0

n

∑

0 1 2 t n – 2 nn – 2

A0 A1 A2 At An-2 An-1 An

. . . . . .
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CASH FLOWS : FUTURE  WORTH

q Note that each cash flow A t in the (n + 1) period 

set contributes differently to Fn: 

   

A0 → A0 1 + i( ) n

A1 → A1 1 + i( ) n−1

A2 → A2 1 + i( ) n−2

! !
At → At 1 + i( ) n− t

! !
An → An
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CASH  FLOWS : PRESENT  WORTH

q We define the present worth P of the cash – flow 

set as

q Note that
  
P = At β

t

t=0

n

∑ = At 1 + i( ) − t

t=0

n

∑

   

P = At 1 + i( ) − t

t=0

n

∑

= At 1 + i( ) − t
1 + i( ) n

1 + i( ) −n

1
! "## $##t=0

n

∑
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CASH FLOWS

or, equivalently,

   

= 1 + i( ) − n

β n
!"# $#

At 1 + i( ) n − t

t=0

n

∑
Fn

! "## $##

= β nF n

  F n = 1 + i( ) n
P
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UNIFORM  CASH –FLOW  SET

q Consider the cash – flow set with  

q Such a set is called an equal payment cash flow set

q We compute the present worth at  t = 0

  A t = A t = 1,2, ... , n

  A1, A2 , ... , An{ }

  
P = A t β

t

t=1

n

∑ = A β t

t=1

n

∑ = Aβ 1 + β + β 2 + ... + β n−1⎡⎣ ⎤⎦
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UNIFORM  CASH –FLOW  SET

q Now, for                     , we have the identity 0 < β < 1

  
β j

j = 0

∞
∑

  

1+ β + ...+ β n−1 = β j − β n 1+ β + β 2 + ...+ β n−1 + ...⎡⎣ ⎤⎦
j=0

∞

∑

= 1− β n( ) β j

j=0

∞

∑

q It follows that
  

β j

j = 0

∞
∑ =

1
1 − β
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UNIFORM  CASH –FLOW  SET

q Therefore

q But

and so

  β = 1 + d( ) −1

  
P = Aβ 1 − β n

1 − β

  
= 1− β n

1− β
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UNIFORM  CASH –FLOW  SET

q We write

and we call                 the equal payment series 

present worth factor

  
P = A 1 − β n

d

  
1 − β = 1 − 1

1 + d
= d

1 + d
= βd

  
1 − β n

d
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EQUIVALENCE

q We consider two cash – flow sets

under a given discount rate d

q We say                              are equivalent cash – flow 

sets if and only if          

   A t
a: t = 0,1,2, ... , n{ } and A t

b: t = 0,1,2, ... , n{ }

  A t
a{ } and A t

b{ }

 
Fm of A t

a{ } = Fm of A t
b{ } for each value of m
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EQUIVALENCE  EXAMPLE

q Consider the two cash – flow sets under  d  =  7%

0 1 2 3
a
4 5 6 7

2,000 2,000 2,000 2,000 2,000

0 1 2
b

8,200.40
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EQUIVALENCE
q We compute

and

q Therefore,                              are equivalent cash 

flow sets under  d = 7%

  
P a = 2,000 β t

t=3

7

∑ = 7,162.55

  P
b = 8,200.40 β 2 = 7,162.55

  A t
a{ } and A t

b{ }
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DISCOUNT  RATE

q The interest rate  i is, typically, referred to as the 
discount rate and is denoted by d

q In converting the future amount  F  to the present 
worth P we can view the discount rate as the 
interest rate that may be earned from the best 

investment alternative
q A postulated savings of  $10,000  in a project in 5

years is worth at present

  P = F 5 β
5 = 10,000 1 + d( ) −5
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DISCOUNT  RATE

q For d  = 0.1

while for d  = 0.2

q In general, for a specified future worth, the lower 

the discount factor, the higher the present worth is 

P  =  $ 6,201,

P  =  $ 4,019
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INTERNAL  RATE  OF  RETURN

q We consider a cash– flow set 

q The value of  d for which

is called the internal rate of return (IRR)

q The IRR is a measure of how fast we recover an 

investment, or stated differently, the speed with 

or rate at which the returns recover an investment

  A t = A : t = 0, 1, 2, ...{ }

  
P − A t β

t = 0
t=0

n

∑
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EXAMPLE:  INTERNAL  RATE  OF  
RETURN

0

1 2

$30,000

3 4 8

$6,000 $6,000 $6,000 $6,000 $6,000

q Consider the following cash – flow set
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INTERNAL  RATE  OF  RETURN

q The present value

has the solution

q The interpretation is that under a 12 % discount rate, 

the present value of the cash – flow set is 0 and so 

is the IRR for the given cash – flow set

  d ≈ 12%

  
P = − 30,000 + 6,000 1 − β 8

d
= 0

  d ≈ 12%
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INTERNAL  RATE  OF  RETURN

q Consider an infinite horizon simple investment

q Therefore

 
d = A

I
ratio of annual return 
to initial investment

A A A

I

0 1 2

. . .
n
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INTERNAL  RATE  OF  RETURN
q Consider

I =  $ 1,000

A =    $ 200

and 

d = 20 % 

we interpret that the returns capture 20 % of the 
investment each year or equivalently that we have  
a simple payback period of 5 years
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IRR TABLE
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EXAMPLE:  IRR FOR  HVAC  RETROFIT  
WITH  INFLATION

q An energy efficiency retrofit of a commercial site 

reduces the HVAC load consumption to 0.8 GWh

from 2.3 GWh and the peak demand by 0.15 MW

q Electricity costs are 60 $/MWh and demand  

charges are 7,000 $/(MW−mo) and these prices 

escalate at an annual rate of   j  =  5 %

q The retrofit requires a $ 500,000 investment today 

and is planned to have a 15 – year lifetime
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EXAMPLE:  IRR FOR  HVAC  RETROFIT  
WITH  INFLATION

q We evaluate the IRR for this project

q The annual savings are

q The IRR is the value of      that results in
  

energy : 2.3− 0.8( )GWh 60 $ / MWh( ) = $ 90,000

demand : .15 MW( ) 7000 $ / (MWh − mo)( )12mo = $ 12,600

total : 90,000 + 12,600 = $ 102,600

 ′d
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EXAMPLE:  IRR FOR  HVAC  RETROFIT  
WITH  INFLATION

q The table look up produces the      of 19 % and 

with inflation factored in, we have

resulting in a combined IRR of 25 %

 ′d

  

1 + d( ) = 1 + j( ) 1 + ′d( )

= 1.05( ) 1.19( )

= 1.25

  
0 = − 500,000 + 102,600

1 − ′β( )15

′d
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INFLATION  IMPACTS

q Inflation is a general increase in the level of prices 

in an economy; equivalently, we may view 

inflation as a general decline in the value of the 

purchasing power of money

q Inflation is measured using prices: different 

products may have distinct escalation rates

q Typically, indices such as the CPI – the consumer 

price index – use a market basket of goods and
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INFLATION  IMPACTS
services as a proxy for the entire US economy
m reference basis is the year 1967 with the price 

of $ 100 for the basket           L0

m in the year 1990, the same basket cost             
$ 374             L 21

m the average inflation rate  j is estimated from

and so
  
1 + j( ) 23

= 374
100

= 3.74

  j = 3.74( )
1
23 − 1 ≈ 0.059
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INFLATION  RATE

q The inflation rate contributes to the overall market 

interest rate i, sometimes called the combined interest 

rate

q We write, using   d for   i

  1 + d( ) = 1 + j( ) 1 + ′d( )

combined 

interest rate

real interest 

rate

inflation 

rate
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INFLATION

q We obtain the following identities

and

  
′d = d − j

1 + j

  
j = d − ′d

1 + ′d
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CASH – FLOWS  INCORPORATING  
INFLATION

q We express the cash – flow in the set

in then current dollars

q The following is synonymous terminology

q An indexed or constant – worth cash – flow is one 

that does not explicitly take inflation into

 current ≡ then current ≡ inflated ≡ after inflation

  At: t = 0 ,1,2, ... , n{ }
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CASH – FLOWS  INCORPORATING  
INFLATION

account, i.e., whatever amount in current inflated 

dollars will buy the same goods and services as 

in the reference year, typically, the year 0

q The following terms are synonymous

and we use them interchangeably

 constant ≡ indexed ≡ inflation free ≡ before inflation
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CASH – FLOWS  INCORPORATING  
INFLATION

q We define the set of constant currency flows

corresponding to the set

with each element      given in period t currency

  Wt : t = 0,1,2, ... , n{ }

 At

  At : t = 0,1,2, ... , n{ }
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CASH – FLOWS  INCORPORATING  
INFLATION

q We use the relationship 

or equivalently

with W t expressed in reference year 0 (today’s) 

dollars

  At = Wt 1 + j( ) t

  Wt = At 1 + j( ) − t
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CASH – FLOWS  INCORPORATING  
INFLATION

q We have

  
P = At β

t

t=0

n

∑

  

= Wt i + j( ) t
i + d( ) − t

t=0

n

∑

= Wt i + j( ) t
i + j( ) − t

i + ′d( ) − t

t=0

n

∑

= Wt i + ′d( ) − t

t=0

n

∑
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CASH – FLOWS  INCORPORATING  
INFLATION

q Therefore, the real interest rate is used to 

discount the indexed cash – flows

q In summary, 

we discount current dollar cash – flow at d

we discount indexed dollar cash – flow at

 ′d

d ′
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CASH – FLOWS  INCORPORATING  
INFLATION

q Whenever inflation is taken into account, it is con-

venient to carry out the analysis in present worth 

rather than future worth or on a cash – flow basis

q Under inflation             , it follows that a uniform  

set of cash flows                                     implies a 

real decline in the cash flows

  j > 0( )

  At = A: t = 1,2, ... , n{ }
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EXAMPLE:  INFLATION  CALCULATIONS

q Consider an annual inflation rate of  j = 4 % and 

the cost for a piece of equipment is assumed 

constant for the next 3 years in terms of today’s $

q The corresponding cash flows in current $ are

  

A0 = $ 1,000

A1 = 1,000 1 + .04( ) = $ 1,040

  W0 = W1 = W2 = W3 = $ 1,000
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EXAMPLE:  INFLATION  CALCULATIONS

q The interpretation of A3 is that under 4 % inflation, 

$ 1,125 in 3 years will have the same value as         

$ 1,000 today; it must not be confused with the 

present worth calculation

  

A2 = 1,000 1 + .04( ) 2
= $ 1,081.60

A3 = 1,000 1 + .04( ) 3
= $ 1,124.86
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MOTOR  ASSESSMENT  EXAMPLE

q For the motor a or b purchase example, we 

consider the escalation of electricity at an annual 

rate of  j =  5 %

q We compute the NPV taking into account the 

inflation (price escalation of 5 %) and

q Then,

  
′d = d − j

1 + j
= .10 − .05

1 + .05
= .05

1.05
= 0.04762

  d = 10%
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MOTOR  ASSESSMENT

  Psavings = $ 2,442

  P = − 500 + Psavings = $ 1,942

q The savings of $ 192 per year are in constant 
dollars 

and so

q The total savings are

which are larger than those of $ 1,135 without 
electricity price escalation 

  
Psavings = Wt 1 + ′d( ) − t

t=1

20

∑ 0.04762
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q A capital investment, such as a renewable energy 

project, requires funds, either borrowed from a 

bank, or obtained from investors, or taken from 

the owner’s own accounts

q Conceptually, we may view the investment as a 

loan that converts the investment costs into a 

series of equal annual payments to pay back the 

loan with the interest

ANNUALIZED  INVESTMENT
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ANNUALIZED  INVESTMENT

  
P = A 1 − β n

d

q For this purpose, we use a uniform cash – flow 

set and use the relation  

present 

worth

equal 

payment term

equal payment series 

present worth factor
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q Therefore, the equal payment is given by

q The capital recovery factor measures the speed 

with which the initial investment is repaid

ANNUALIZED  INVESTMENT

  
A = P d

1 − β n
capital recovery 

factor
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q An efficiency upgrade of an air conditioner 
incurs a $ 1,000 investment and results in savings 
of $ 200 per year

q The $ 1,000 is obtained as a 10 – year loan repaid 
at 7 % interest

q The repayment on the loan is done as a uniform 
cash flow

EXAMPLE: EFFICIENT  AIR  
CONDITIONER

  
A = 1,000 0.07

1 − β 10 = $ 142.38
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q The annual net savings are

200 – 142.38   =  $ 57.62

and not only are the savings sufficient to pay 

back the loan in 10 years, they also provide a 

yearly surplus of  $ 57.62

q The benefits/costs ratio is

EXAMPLE: EFFICIENT  AIR  
CONDITIONER

 
200

142.38
= 1.4
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q We consider a 3 – kW PV system whose capacity 

factor  =  0.25

q The investment incurred $ 10,000 and the funds 

are obtained as a 20 – year 6 % loan

q The annual loan repayments are

EXAMPLE: PV  SYSTEM

  
A = 10,000 0.06

1 − β 20 = 10,000 0.0872( ) = $ 872

κ
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q The annual energy generated is

q We can compute the unit costs of electricity for 

break–even operation to be 

EXAMPLE: PV  SYSTEM

  3( ) 0.25( ) 8,760( ) = 6,570 kWh

  

872
6,570

= 0.133 $ / kWh
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q The PV system for a Boulder house is designed 
to generate roughly 4,000 kWh annually

q The key cost components are

PV   SYSTEM  TOTAL  COST  
ESTIMATION

component costs ($)

PVs 4.20/W (DC )

inverter 1.20/W (DC )

tracker 400 + 100/m 2

installation 3,800
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q We assume the PVs have a 12 % efficiency and 

the inverter efficiency is 75 %

q We use the solar insolation tables in Appendix G

to obtain the average daily insolation for a fixed 

array 

q We compare the costs of a fixed array with a

tilt angle and those with a single – axis tracker 

EXAMPLE:  BOULDER  HOUSE  PV   
SYSTEM

o15−
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q The solar insolation tables in Appendix G indicate 

the average daily insolation in Boulder for a fixed 

array to be 5.4 kWh/m 2 – d

q We interpret the insolation as 5.4 h/d of 1 sun

q We compute

EXAMPLE:  BOULDER  HOUSE  PV   
SYSTEM

( )( )( ),
4,000 2.71

0.75 5.4 365DC stc pP kW= =
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q The costs of the PVs and the inverters are 

q Given the 12 % efficiency of the PVs, the array 

area required is

EXAMPLE:  BOULDER  HOUSE  PV  
SYSTEM

4.20 2,710 11,365

1.20 2,710 3,247

costs of PVs $

costs of inverters $

= × =

= × =

  
area =

PDC ,stc

1 kW /m 2( )η = 2.71
1 × 0.12

= 22.6 m 2
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q We next consider the average daily insolation in 

Boulder with a single–axis tracker of  7.2 kWh/m 2 – d,

i.e., 7.2 h/d of full sun – as given in Appendix G

q We compute

q The costs of the PVs and the inverters are

EXAMPLE:  BOULDER  HOUSE  PV   
SYSTEM

( )( )( ),
4,000 2.03

0.75 7.2 365DC stc pp kW= =
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q Thus the area for the system is

q The tracker costs are

EXAMPLE:  BOULDER  HOUSE  PV  
SYSTEM

4.20 2,030 8,524

1.20 2,030 2,436

costs of PVs $

costs of inverters $

= × =

= × =

  
area =

PDC ,stc

1 kW /m 2( )η
=

2.03
1× 0.12

= 16.9 m 2

400 16.9 100 2,090costs of trackers $= + × =
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EXAMPLE:  BOULDER  HOUSE  PV  
SYSTEM

element fixed tilt array
single–axis 

tracker

PVs $ 11,365 $ 8,524

inverter $ 3,247 $ 2,436

tracker – $ 2,090

installation $ 3,800 $ 3,800

total $ 18,412 $ 16,850
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q The installation of the trackers increases the 

average daily insolation received at the PV panels 

and decreases the area required for the system

q While the trackers add $ 2,090 to the fixed costs of 

the PV system, the PV system investment costs 

with the trackers are nevertheless markedly 

below those of the fixed panels 

EXAMPLE:  BOULDER  HOUSE  PV  
SYSTEM
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q The capital recovery factor is the scheme we use to 

determine the financing costs of a PV project 

q A loan of P at interest rate i may be recovered 

over n years through fixed annual payments of

REVIEW  OF  THE  c.r.f.

1 n

iA P
β

=
−

  
β Δ

1
1 + i

interest rate

c.r.f.
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q We illustrate the determination of the LCOE with 
a PV system example with the following features:

minstallation costs: 

mannual O&M costs:

mannual land lease fee:

mannual energy production: 4 GWh

m9 %, 20 – year loan

q The c.r.f. is computed to be

EXAMPLE:  LCOE FOR THE  PV 
SYSTEMS 

7$ million

40,000$

35,000$
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q The c.r.f. results in the annual amortized fixed 

costs of

q Then we can evaluate the LCOE using

EXAMPLE:  LCOE  FOR  THE  PV  
SYSTEMS 

7,000,000 0.1095 766,500$× =

766,500 35,000 40,000 0.21
4,000,000

$
kWh

+ + =

  
c.r. f . 9 %, 20 y( ) =

0.09( ) 1 + 0.09( ) 20

1 + 0.09( ) 20
− 1

= 0.1095 y −1
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q A significant factor that was ignored in the cost 

calculation in the previous example is the 

impacts of the financial and tax incentives

q Many solar installations are eligible for federal 

and state tax incentives for the purchase and 

implementation of PV systems

FINANCIAL  INCENTIVES  FOR  SOLAR
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FEDERAL  BUSINESS  ENERGY 
INVESTMENT  TAX  CREDIT  (ITC ) 

Source: http://programs.dsireusa.org/system/program/detail/658
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q The ITC originally enacted in the Energy Policy Act 

of 2005 for solar has been renewed numerous 

times and is currently set at 30 % of the initial 

investment

q The ITC supports electricity generated by solar 

systems on residential and commercial properties

TAX  INCENTIVES  FOR  SOLAR
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q We illustrate the ITC impacts on the LCOE in the 

previous PV system example

q With the ITC , the initial investment tax savings 

amount to

q The resulting annual amortized fixed costs are

EXAMPLE:  TAX  INCENTIVES  FOR  
SOLAR

0.3 7,000,000 2,100,000$× =

(1 0.3) 7,000,000 0.1095 536,550$− × × =
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q Then we can evaluate the LCOE using

q We observe that the introduction of the ITC

results in a 6 ¢/kWh reduction in the LCOE

q This corresponds to a 27 % reduction in the 

LCOE

EXAMPLE:  TAX  INCENTIVES  FOR  
SOLAR

536,550 35,000 40,000 0.15
4,000,000

$
kWh

+ + =
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q The use of a home loan to finance the installation 

of a PV system has an important impact on the 

PV electricity price in light of the income tax 

benefits, which depend on the homeowner 

marginal tax bracket (MTB)

TAX  BENEFITS  FOR  SOLAR
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q For a loan over several years, almost all of the 

first year payments constitute the interest due, 

with a very small contribution to the reduction of 

the loan principal, while the opposite allocation 

occurs towards the end of the loan life

q In the first year, interest is owed on the entire 

amount of the loan and the tax benefits are

TAX  BENEFIT  FOR  SOLAR

i loan MTB× ×
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q Consider a 30 – year 4.5% loan to install a 

residential 3.36 – kW p PV system in Chicago, with 

the annual energy of 4,942 kWh

q The c.r.f. for the loan is

EXAMPLE:  TAX  BENEFIT  FOR  SOLAR

( )( )
( )

30
1

30

0.045 1 0.045
0.06139

1 0.045 1
y −+

=
+ −
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q The residential PV system costs $ 19,186 and the 

annual loan payment is 

q Thus the cost of PV electricity in the first year is

q During the first year, the owner pays the annual  

interest on the $ 19,186 loan in the amount of

EXAMPLE:  TAX  BENEFIT  FOR  SOLAR

19,186 0.06139 1,178$× =

1,178 0.239
4,932

$
kWh

=
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q We assume the homeowner is in the 25 % MTB

and determine the first year tax savings to be

which reduce the cost of PV electricity to

EXAMPLE:  TAX  BENEFIT  FOR  SOLAR

19,186 0.045 863first year interest $= × =

863 0.25 216$× =

1,178 216 0.192
4,932

$
kWh

− =
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q Many states and certain jurisdictions have intro-

duced rebate programs to promote investments 

in solar systems

q A rebate reduces the total investment required 

by, in effect, returning some of the costs of the 

PV system installation to the investor:

reduced costs   =   original costs – rebate

REBATES
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ILLINOIS  SOLAR  AND  WIND  ENERGY 
REBATE  PROGRAM

Source: http://programs.dsireusa.org/system/program/detail/585
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q For instance, if the total investment costs in the 

previous example are reduced by the 25 % rebate 

under the Illinois solar and wind energy program, 

we can determine the reduced annual payment

q Then the first year interest reduces to

EXAMPLE:  REBATES

( )19,186 1 0.25 0.06139 883$× − × =
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q Therefore the first year tax savings are given by

q Consequently the cost of PV electricity in the first 

year reduces to

EXAMPLE:  REBATES

648 0.25 162$× =

883 162 0.146
4,932

$
kWh

− =

( )19,186 1 0.25 0.045 648$× − × =


