ECE 333 – GREEN ELECTRIC ENERGY 1. Introduction and Overview

George Gross

Department of Electrical and Computer Engineering

University of Illinois at Urbana–Champaign

US SOLAR UTILITY – SCALE GENERATION: 2009 – 2020

Source: https://www.eia.gov/electricity/data/browser/#/topic/0?agg=2,0,1&fuel=0045u&geo=vvvvvvvvvve&sec=g&linechart=ELEC.GEN.SUN-US-99.A&columnchart=ELEC.GEN.SUN-US-99.A&map=ELEC.GEN.SUN-US-99.A&freq=A&ctype=linechart<ype=pin&rtype=s&pin=&rse=0&maptype=0

PV SOLAR CAPACITY PRICE DECLINE

2020 US SOLAR PV STATUS

- □ US installed 19.2 GW_{dc} of solar PV capacity in 2020, a 43 % increase over the amount installed in 2019
- The *PV* capacity represents almost 43 % of the
 2020 added *US* electricity generation capacity
- The US cumulative operational solar PV capacity exceeds 100 GW_{dc}
- The implementation of *concentrated solar power* (*CSP*) often referred to as solar thermal plants
 is growing considerably more slowly both in the
 US and the rest of the world

2020 US SOLAR PV STATUS

□ The 2021 Q1 was the US solar industry's largest Q1 ever with over 5 GW_{dc} new solar PV capacity Potential headwinds loom on the horizon for the foreseeable future as the COVID-19 pandemic fallout threatens project schedules due to labor shortage/supply chain problems that lead to construction delays, work stoppages, permitting delays, reduced customer demand and a more challenging financing access environment; as a result, solar growth may slow

UTILITY PV INSTALLATIONS VS. CONTRACTED PIPELINE

Source: Wood Mackenzie and SEIA; available online at https://www.seia.org/solar-industry-research-data

ANNUAL US UTILITY RENEWABLE CAPACITY ADDITIONS: 2010 – 2020

cumulative in GW

CLEAN POWER CAPACITY GROWTH BY STATE

Source: American clean power 2021, q1; available at https://cleanpower.org/wpcontent/uploads/2021/05/CPQ-2021Q1_public.pdf; p. 6

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

185

ANNUAL NORTH AMERICAN T & D INVESTMENTS: 2010 - 2020

cumulative billion \$

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

LEADING NATIONS' RENEWABLE ENERGY GENERATION 2020

Source: REN 21 at https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf; p. 199

US ANNUAL AND CUMULATIVE UTILITY BATTERY STORAGE CAPACITY GROWTH

Source: American clean power 2021, q1; available at https://cleanpower.org/wpcontent/uploads/2021/05/CPQ-2021Q1_public.pdf; p. 20

cumulative storage capacity (MW)

188

GLOBAL ENERGY STORAGE INSTALLED CAPACITY TECHNOLOGIES: 2019 – 2020

NATIONAL SOLAR DATABASE

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

2020 US GEOTHERMAL ENERGY STATUS

- In 2020, US geothermal units
 - produced about 0.5 % of the
 - total US electricity generation

U.S.'s first geothermal power plant, Mayacama

- Total 2020 installed US geothermal capacity w was
 - 3,673 MW; generation in 2020 was 16,930 GWh
- **Geothermal generation has experienced slow** growth in recent years
- **Geothermal prices exceed wind/solar prices**

GEOTHERMAL PRODUCTION

Production Well

Injection Well

GEOTHERMAL PLANTS

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 194

US GEOTHERMAL RESOURCES

Source: NREL; available at https://www.nrel.gov/gis/assets/images/geothermal-identified-hydrothermal-and-egs.jpg

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

195

US GEOTHERMAL ENERGY STATUS

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 196

TOP TEN GEOTHERMAL CAPACITY COUNTRIES IN 2020

Source: REN 21 GSR 2021, available at https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf; p.100

GEOTHERMAL POWER INSTALLED COSTS, c.f.s AND LCOE: 2010 – 2020

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020

GEOTHERMAL POWER TOTAL INSTALLED COSTS: 2007–2021

CAPACITY FACTORS OF GEOTHERMAL POWER PLANTS: 2007–2021

LCOE OF GEOTHERMAL POWER PROJECTS: 2007–2021

2019 BIOMASS / BIOFUELS STATUS

- World biomass installed
 capacity is 146 GW and the
 2016 generation was 504 TWh
- □ The US grid-connected

installed biomass capacity is 16.0 *GW*

China, US and Brazil are the three largest biofuel producers in the world

World biofuels production capacity is 144 *billion l/y*

GLOBAL FUEL ETHANOL PRODUCTION: 2020

203

YEARLY ETHANOL AND BIODIESEL PRODUCTION: 2001–2019

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

BIOENERGY INSTALLED COSTS, c.f.s AND LCOE: 2010 – 2020

BIOENERGY PROJECTS c.f.s. IN 2020

TOTAL INSTALLED COSTS OF BIOENERGY PROJECTS IN 2020

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ANNUAL SOLAR AND BIOMASS CAPACITY: 2014 – 2017

Source: EIA, Electric Power Monthly, data published in May 9, 2018, Today in Energy; available online at https://www.eia.gov/todayinenergy/detail.php?id=36132 ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 208

ANNUAL SOLAR & BIOMASS ENERGY PRODUCTION: 2014 – 2017

US BIOMASS RESOURCE MAP

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 210

BIOMASS RESOURCES

- The major capital cost items for a biomass power system include the fuel storage and fuel handling equipment, the combustor, boiler, prime mover, generator, controls, stack, and emissions control equipment
- □ US biomass resources deploy direct combustion as the most common method of heat production
- Small-scale biomass electric plants installed cost range is 3,000 – 4,000 \$/kW and levelized costs of energy of 80 – 150 \$/MWh

NEW WORLDWIDE CLEAN ENERGY INVESTMENT: Q1/2006 – Q2/2020

Source: Bloomberg New Energy Finance; available at https://about.bnef.com/clean-energy-investment/

NEW WORLDWIDE CLEAN ENERGY INVESTMENT BY REGION: Q1/2006 - Q2/2021

Source: Bloomberg New Energy Finance; available at https://assets.bbhub.io/professional/sites/24/BNEF-Renewable-Energy-Investment-Tracker-1H-2021_FINAL_abridged.pdf; p.17

NEW WORLDWIDE CLEAN ENERGY INVESTMENT BY SECTOR: Q1/2006 - Q2/2021

214
NEW ANNUAL GLOBAL CLEAN ENERGY INVESTMENT BY REGION: 2006 - 2020

Source: Bloomberg New Energy Finance; available at https://about.bnef.com/clean-energy-investment/

NEW CLEAN ENERGY INVESTMENT BY CHINA: Q1/2006 - Q2/2020

Source: Bloomberg New Energy Finance; available at https://about.bnef.com/clean-energy-investment/

NEW CLEAN ENERGY INVESTMENT BY INDIA: Q1/2006 – Q2/2020

Source: Bloomberg New Energy Finance; available at https://about.bnef.com/clean-energy-investment/

NET ANNUAL RENEWABLE CAPACITY ADDITION: 2018 – 2021

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ANNUAL GLOBAL POWER SECTOR INVESTMENT: 2011 – 2021

GLOBAL RENEWABLE INVESTMENT: 2011 – 2020

Source: REN 21 at https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf; p.184

TRENDS IN GLOBAL RENEWABLE INVESTMENT: A COMPARISON

Source: REN 21 at https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf; p.188

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserve 1.

IMPACTS OF RENEWABLES

ELECTRIC SYSTEM INFRASTRUCTURE

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TWENTY-FOUR HOUR PROFILE

ECE 333

Source: California ISO data for 08/08/13

WEEKLY LOAD CYCLE

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE WEEKLY LOAD SHAPE

CALIFORNIA SUMMER LOAD: TYPICAL DAILY SHAPE

CAISO APRIL 2005 DAILY WIND PATTERNS

ONTARIO DAILY WIND POWER OUTPUT

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 229

PV POWER OUTPUT OF 1 – MW CdTe ARRAY IN GERMANY

samples collected on a 5 – minute basis

PV POWER OUTPUT AT THE NEVADA 70 - kW **POLYCRYSTALLINE ARRAY**

AUGUST 21, 2017 SOLAR ECLIPSE

'000s of megawatts, Pacific daylight time

Source: California ISO

KEY CHALLENGES IN RENEWABLE EXPANSION

- Integration into the grid
 - **O** interconnection
 - **O grid capability**
 - **O** reliability issues
 - **O power quality**
- Competitiveness of technology costs
- Environmental issues, e.g., recycling
- Development of lower-cost storage technology

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

KEY CHALLENGES IN RENEWABLE EXPANSION

- □ Formulation of appropriate policies at the
 - O federal;
 - **O** state; and
 - O local
 - levels
- Regulatory accommodation via
 - **O** smoother permitting processes
 - **O** assurances of back up power provision
 - **O** implementation of "green power" differential

US 2020 BILLION – DOLLAR WEATHER AND CLIMATE DISASTERS

US 2021 BILLION – DOLLAR WEATHER AND CLIMATE DISASTERS

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE US VANISHING COAL PLANTS

□ From 2011 to 2019, 121 coal–fired power plants were repurposed to use other type of fuels: 49.2 GW of coal from the total 316.8 GW coal capacity at the start of 2011 was retired □ Of the 121 plants, 103 were converted to or replaced by natural-gas-fired plant: **O** 14.3 *GW* capacity converted the boiler to burn natural gas

THE US VANISHING COAL PLANTS

O 15.3 *GW* capacity of natural gas combined

cycle (NGCC) replaced 7.9 GW coal capacity

□ The switch from coal to natural gas was driven by

O stricter emission standards;

O low natural gas prices; and,

O more efficient gas turbine technology

US COAL TO NATURAL GAS CONVERSION : 2011 - 2019

Source: EIA August 5, 2020; available at https://www.eia.gov/todayinenergy/detail.php?id=44636

US COAL-FIRED CAPACITY RETIREMENTS / REPLACEMENTS : 2011 – 2019

- replacement by NGCC
- conversion to natural gas boiler

outright retirement

COAL PLANT RETIREMENTS CONTINUE

Source: EIA, Today in Energy, September 1, 2020; available online at https://www.eia.gov/todayinenergy/detail.php?id=44976

COAL PLANT RETIREMENTS

Source: S&P Global Market Inteligence; available on-line at https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/2030-is-the-new-2050-utilities-pressured-to-hasten-decarbonization-goals-62432337

TRUMP "DIGS COAL "

- While the US remains the world's premier oil and gas producer, Trump has tried to stop the coal decline but without much success:
 - retirements of mostly 50+ years-old plants
 continued
 - **O** thousands of miners lost jobs
 - integration of renewable resources –
 principally solar at deeper penetrations

TRUMP " DIGS COAL "

- Today, coal powers less than 20 % of US electricity consumption
- **Climate change concerns, the movement away**
 - from coal by many advanced economies and the
 - push by states and cities to limit future fossil
 - resource reliance are key drivers and so is the

improved economics of solar and wind power

The Washington Post

Kentucky Coal Mining Museum in Harlan County switches to solar power

Washington Post, April 6 2017)

GLOBAL COAL-FIRED GENERATION CAPACITY: 2019 – 2021

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

GAS-FIRED POWER GENERATION CAPACITY ADDITION: 2020 - 2022

ECE 333 © 2002 – 2021 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COURSE OBJECTIVES

- Acquaint students with key basic physical principles used in renewable energy generation
- **Stress the importance of** *economics* including the role of incentives – and *environmental* aspects in electricity developments; also, the role in job creation by the renewable sector is critical Provide a good understanding of impacts of market forces on shaping the electricity business

COURSE OBJECTIVES

- Expose students to some major national and
 - international developments in renewable energy
 - systems and their effective integration into
 - today's power grids
- Explain the exciting developments in the energy
 - sector and the role electricity plays in addressing

global warming issues

ECE 333 : KEY ASPECTS

□ Understanding of the basic scientific principles

underlying renewable resources is essential

Awareness of the role that renewables can play in

effective climate change activities is important

□ Challenges in the integration of renewables are

huge in nearly every dimension
TOPICAL OUTLINE

- General overview of electricity demand, supply,
 - industry structure, interconnected system
 - operations and state of technology
- □ Nature/role of *renewable generation resources*
- □ Review of concepts in electric circuit analysis
- **Engineering aspects of** *renewable resource* **genera**-

tion technologies: wind energy conversion

TOPICAL OUTLINE

systems; thermodynamics considerations; solar

- resource and solar array systems; economics of
- renewable technologies; environmental issues
- □ The roles of energy storage resources and their
 - deployment in grids with integrated renewable
- □ The demand picture: the nature of electrical loads;

time dependence and periodicity; price impacts

TOPICAL OUTLINE

- Demand management and energy conservation;
 - efficiency improvements; price-responsive
 - demand; load management; and the role of new
 - technologies
- **Electricity market basics**
- Integration of renewable generation into the grid
- □ The policy and regulatory dimensions

GRADING POLICY

- □ The course grade is based on the performance of
 - the student in the quizzes, the midterm exams
 - and the final exam
- **Students will be assigned homework but will not**
 - need to hand them in as they are not graded
- □ The problems in the short quizzes in class will be

based on the homework assignment problems

PROPOSED GRADING POLICY TABLE

component	percentage
homework	0
quizzes	15
two midterm exams	40
final	45
total	100

