Lecture 7: Frequency Response

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020
(1) Review: Convolution and Fourier Series
(2) Frequency Response
(3) Example: First Difference

4 Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Outline

(1) Review: Convolution and Fourier Series
(2) Frequency Response
(3) Example: First Difference

4 Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

What is Signal Processing, Really?

- When we process a signal, usually, we're trying to enhance the meaningful part, and reduce the noise.
- Spectrum helps us to understand which part is meaningful, and which part is noise.
- Convolution (a.k.a. filtering) is the tool we use to perform the enhancement.
- Frequency Response of a filter tells us exactly which frequencies it will enhance, and which it will reduce.

Review: Convolution

- A convolution is exactly the same thing as a weighted local average. We give it a special name, because we will use it very often. It's defined as:

$$
y[n]=\sum_{m} g[m] f[n-m]=\sum_{m} g[n-m] f[m]
$$

- We use the symbol $*$ to mean "convolution:"

$$
y[n]=g[n] * f[n]=\sum_{m} g[m] f[n-m]=\sum_{m} g[n-m] f[m]
$$

Review: Spectrum

The spectrum of $x(t)$ is the set of frequencies, and their associated phasors,

$$
\operatorname{Spectrum}(x(t))=\left\{\left(f_{-N}, a_{-N}\right), \ldots,\left(f_{0}, a_{0}\right), \ldots,\left(f_{N}, a_{N}\right)\right\}
$$

such that

$$
x(t)=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi f_{k} t}
$$

Review: Fourier Series

One reason the spectrum is useful is that any periodic signal can be written as a sum of cosines. Fourier's theorem says that any $x(t)$ that is periodic, i.e.,

$$
x\left(t+T_{0}\right)=x(t)
$$

can be written as

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k F_{0} t}
$$

which is a special case of the spectrum for periodic signals: $f_{k}=k F_{0}$, and $a_{k}=X_{k}$, and

$$
F_{0}=\frac{1}{T_{0}}
$$

- Fourier Series Analysis (finding the spectrum, given the waveform):

$$
X_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t
$$

- Fourier Series Synthesis (finding the waveform, given the spectrum):

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

- DFT Analysis (finding the spectrum, given the waveform):

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}
$$

- DFT Synthesis (finding the waveform, given the spectrum):

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}
$$

Outline

(1) Review: Convolution and Fourier Series
(2) Frequency Response

3 Example: First Difference
4 Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Frequency Response

The frequency response, $G(\omega)$, of a filter $g[n]$, is its output in response to a pure tone, expressed as a function of the frequency of the tone.

Calculating the Frequency Response

- Output of the filter:

$$
\begin{aligned}
y[n] & =g[n] * x[n] \\
& =\sum_{m} g[m] x[n-m]
\end{aligned}
$$

- in response to a pure tone:

$$
x[n]=e^{j \omega n}
$$

Calculating the Frequency Response

Output of the filter in response to a pure tone:

$$
\begin{aligned}
y[n] & =\sum_{m} g[m] x[n-m] \\
& =\sum_{m} g[m] e^{j \omega(n-m)} \\
& =e^{j \omega n}\left(\sum_{m} g[m] e^{-j \omega m}\right)
\end{aligned}
$$

Notice that the part inside the parentheses is not a function of n. It is not a function of m, because the m gets summed over. It is only a function of ω. It is called the frequency response of the filter, $G(\omega)$.

Frequency Response

When the input to a filter is a pure tone,

$$
x[n]=e^{j \omega n}
$$

then its output is the same pure tone, scaled and phase shifted by a complex number called the frequency response $G(\omega)$:

$$
y[n]=G(\omega) e^{j \omega n}
$$

The frequency response is related to the impulse response as

$$
G(\omega)=\sum_{m} g[m] e^{-j \omega m}
$$

Outline

(1) Review: Convolution and Fourier Series
(2) Frequency Response
(3) Example: First Difference

4 Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Example: First Difference

Remember that taking the difference between samples can be written as a convolution:

$$
y[n]=x[n]-x[n-1]=g[n] * x[n],
$$

where

$$
g[n]= \begin{cases}1 & n=0 \\ -1 & n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Example: First Difference

Suppose that the input is a pure tone:

$$
x[n]=e^{j \omega n}
$$

Then the output will be

$$
\begin{aligned}
y[n] & =x[n]-x[n-1] \\
& =e^{j \omega n}-e^{j \omega(n-1)} \\
& =G(\omega) e^{j \omega n},
\end{aligned}
$$

where

$$
G(\omega)=1-e^{-j \omega}
$$

First Difference Filter at $\omega=0$

$$
G(\omega)=1-e^{-j \omega}
$$

- Frequency $\omega=0$ means the input is a constant value:

$$
x[n]=\left.e^{j \omega n}\right|_{\omega=0}=1
$$

- At frequency $\omega=0$, the frequency response is zero!

$$
G(0)=1-e^{0}=0
$$

- ... which totally makes sense, because if $x[n]=1$, then

$$
y[n]=x[n]-x[n-1]=1-1=0
$$

First Difference Filter at $\omega=\pi$

- Frequency $\omega=\pi$ means the input is $(-1)^{n}$:

$$
x[n]=e^{j \pi n}=(-1)^{n}= \begin{cases}1 & n \text { is even } \\ -1 & n \text { is odd }\end{cases}
$$

- At frequency $\omega=\pi$, the frequency response is two!

$$
G(\pi)=1-e^{j \pi}=1-(-1)=2
$$

- ... which totally makes sense, because if $x[n]=(-1)^{n}$, then

$$
y[n]=x[n]-x[n-1]= \begin{cases}1-(-1)=2 & n \text { is even } \\ (-1)-1=-2 & n \text { is odd }\end{cases}
$$

First Difference Filter at $\omega=\frac{\pi}{2}$

Frequency $\omega=\frac{\pi}{2}$ means the input is j^{n} :

$$
x[n]=e^{j \frac{\pi n}{2}}=j^{n}= \begin{cases}1 & n \in\{0,4,8,12, \ldots\} \\ j & n \in\{1,5,9,13, \ldots\} \\ -1 & n \in\{2,6,10,14, \ldots\} \\ -j & n \in\{3,7,11,15, \ldots\}\end{cases}
$$

The frequency response is:

$$
G\left(\frac{\pi}{2}\right)=1-e^{j \frac{\pi}{2}}=1-j
$$

so $y[n]$ is
$y[n]=(1-j) e^{j \frac{\pi n}{2}}=(1-j) j^{n}= \begin{cases}(1-j) & n \in\{0,4,8,12, \ldots\} \\ (j+1) & n \in\{1,5,9,13, \ldots\} \\ (-1+j) & n \in\{2,6,10,14, \ldots\} \\ (-j-1) & n \in\{3,7,11,15, \ldots\}\end{cases}$

Outline

(1) Review: Convolution and Fourier Series
(2) Frequency Response
(3) Example: First Difference

4 Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Superposition and the Frequency Response

The frequency response obeys the principle of superposition, meaning that if the input is the sum of two pure tones:

$$
x[n]=e^{j \omega_{1} n}+e^{j \omega_{2} n}
$$

then the output is the sum of the same two tones, each scaled by the corresponding frequency response:

$$
y[n]=G\left(\omega_{1}\right) e^{j \omega_{1} n}+G\left(\omega_{2}\right) e^{j \omega_{2} n}
$$

Response to a Cosine

There are no complex exponentials in the real world. Instead, we'd like to know the output in response to a cosine input. Fortunately, a cosine is the sum of two complex exponentials:

$$
x[n]=\cos (\omega n)=\frac{1}{2} e^{j \omega n}+\frac{1}{2} e^{-j \omega n}
$$

therefore,

$$
y[n]=\frac{G(\omega)}{2} e^{j \omega n}+\frac{G(-\omega)}{2} e^{-j \omega n}
$$

Response to a Cosine

What is $G(-\omega)$? Remember the definition:

$$
G(\omega)=\sum_{m} g[m] e^{-j \omega m}
$$

Replacing every ω with a $-\omega$ gives:

$$
G(-\omega)=\sum_{m} g[m] e^{j \omega m}
$$

Notice that $g[m]$ is real-valued, so the only complex number on the RHS is $e^{j \omega m}$. But

$$
e^{j \omega m}=\left(e^{-j \omega m}\right)^{*}
$$

so

$$
G(-\omega)=G^{*}(\omega)
$$

Response to a Cosine

$$
\begin{aligned}
y[n] & =\frac{G(\omega)}{2} e^{j \omega n}+\frac{G^{*}(\omega)}{2} e^{-j \omega n} \\
& =\frac{|G(\omega)|}{2} e^{j \angle G(\omega)} e^{j \omega n}+\frac{|G(\omega)|}{2} e^{-j \angle G(\omega)} e^{-j \omega n} \\
& =\frac{|G(\omega)|}{2} e^{j(\omega n+\angle G(\omega))}+\frac{|G(\omega)|}{2} e^{-j(\omega n+\angle G(\omega))} \\
& =|G(\omega)| \cos (\omega n+\angle G(\omega))
\end{aligned}
$$

Magnitude and Phase Responses

- The Magnitude Response $|G(\omega)|$ tells you by how much a pure tone at ω will be scaled.
- The Phase Response $\angle G(\omega)$ tells you by how much a pure tone at ω will be advanced in phase.

Outline

(1) Review: Convolution and Fourier Series
(5) Frequency Response

3 Example: First Difference
(4) Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Example: First Difference

Remember that the first difference, $y[n]=x[n]-x[n-1]$, is supposed to sort of approximate a derivative operator:

$$
y(t) \approx \frac{d}{d t} x(t)
$$

If the input is a cosine, what is the output?

$$
\frac{d}{d t} \cos (\omega t)=-\omega \sin (\omega t)=\omega \cos \left(\omega t+\frac{\pi}{2}\right)
$$

Does the first-difference operator behave the same way (multiply by a magnitude of $|G(\omega)|=\omega$, phase shift by $+\frac{\pi}{2}$ radians so that cosine turns into negative sine)?

Example: First Difference

Freqeuncy response of the first difference filter is

$$
G(\omega)=1-e^{-j \omega}
$$

Let's try to convert it to polar form, so we can find its magnitude and phase:

$$
\begin{aligned}
G(\omega) & =e^{-j \frac{\omega}{2}}\left(e^{j \frac{\omega}{2}}-e^{-j \frac{\omega}{2}}\right) \\
& =e^{-j \frac{\omega}{2}}\left(2 j \sin \left(\frac{\omega}{2}\right)\right) \\
& =\left(2 \sin \left(\frac{\omega}{2}\right)\right)\left(e^{j\left(\frac{\pi-\omega}{2}\right)}\right)
\end{aligned}
$$

So the magnitude and phase response are:

$$
\begin{aligned}
& |G(\omega)|=2 \sin \left(\frac{\omega}{2}\right) \\
& \angle G(\omega)=\frac{\pi-\omega}{2}
\end{aligned}
$$

First Difference: Magnitude Response

Taking the derivative of a cosine scales it by ω. The first-difference filter scales it by $|G(\omega)|=2 \sin (\omega / 2)$, which is almost the same, but not quite:

First Difference: Phase Response

Taking the derivative of a cosine shifts it, in phase, by $+\frac{\pi}{2}$ radians, so that the cosine turns into a negative sine. The first-difference filter shifts it by $\angle G(\omega)=\frac{\pi-\omega}{2}$, which is almost the same, but not quite.

First Difference: All Together

Putting it all together, if the input is $x[n]=\cos (\omega n)$, the output is

$$
y[n]=|G(\omega)| \cos (\omega n+\angle G(\omega))=2 \sin \left(\frac{\omega}{2}\right) \cos \left(\omega n+\frac{\pi-\omega}{2}\right)
$$

- At frequency $\omega=0$, the phase shift is exactly $\frac{\pi}{2}$, so the output is turned from cosine into -sine (but with an amplitude of 0 !)
- At frequency $\omega=\pi$, the phase shift is 0 ! So the output is just a cosine at twice the amplitude.
- In between, $0<\omega<\pi$,
- The amplitude gradually increases, while
- the phase gradually shifts, from a -sine function back to a cosine function.

First Difference: All Together

Putting it all together, if the input is $x[n]=\cos (\omega n)$, the output is

$$
y[n]=|G(\omega)| \cos (\omega n+\angle G(\omega))=2 \sin \left(\frac{\omega}{2}\right) \cos \left(\omega n+\frac{\pi-\omega}{2}\right)
$$

Outline

(1) Review: Convolution and Fourier Series
(2) Frequency Response

3 Example: First Difference
(4) Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Linearity

Filters are linear: if you scale the input, the output also scales. Thus if

$$
x[n]=A e^{j \omega_{1} n}+B e^{j \omega_{2} n},
$$

then the output is the sum of the same two tones, each scaled by the corresponding frequency response:

$$
y[n]=G\left(\omega_{1}\right) A e^{j \omega_{1} n}+G\left(\omega_{2}\right) B e^{j \omega_{2} n}
$$

Response to a Cosine

Linearity applies to complex numbers, not just real numbers! So if

$$
x[n]=A \cos (\omega n+\theta)=\frac{A}{2} e^{j(\omega n+\theta)}+\frac{A}{2} e^{-j(\omega n+\theta)}
$$

then

$$
\begin{aligned}
y[n] & =\frac{A G(\omega)}{2} e^{j(\omega n+\theta)}+\frac{A G^{*}(\omega)}{2} e^{-j(\omega n+\theta)} \\
& =\frac{A|G(\omega)|}{2} e^{j(\omega n+\theta+\angle G(\omega))}+\frac{A|G(\omega)|}{2} e^{-j(\omega n+\theta+\angle G(\omega))} \\
& =A|G(\omega)| \cos (\omega n+\theta+\angle G(\omega))
\end{aligned}
$$

Outline

(1) Review: Convolution and Fourier Series
(2) Frequency Response

3 Example: First Difference
(4) Superposition and the Frequency Response
(5) Example: First Difference
(6) Linearity
(7) Summary

Summary

- Tones in \rightarrow Tones out

$$
\begin{aligned}
& x[n]=e^{j \omega n} \rightarrow y[n]=G(\omega) e^{j \omega n} \\
& x[n]=\cos (\omega n) \rightarrow y[n]=|G(\omega)| \cos (\omega n+\angle G(\omega)) \\
& x[n]=A \cos (\omega n+\theta) \rightarrow y[n]=A|G(\omega)| \cos (\omega n+\theta+\angle G(\omega))
\end{aligned}
$$

- where the Frequency Response is given by

$$
G(\omega)=\sum_{m} g[m] e^{-j \omega m}
$$

