Review	Frequency Response	Example	Superposition	Example	Linearity	Summary

Lecture 7: Frequency Response

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary

1 Review: Convolution and Fourier Series

- 2 Frequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- 5 Example: First Difference
- 6 Linearity

Review 00000	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary O
Outlin	е					

1 Review: Convolution and Fourier Series

- Prequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- 5 Example: First Difference
- 6 Linearity

- When we process a signal, usually, we're trying to enhance the meaningful part, and reduce the noise.
- **Spectrum** helps us to understand which part is meaningful, and which part is noise.
- **Convolution** (a.k.a. filtering) is the tool we use to perform the enhancement.

• Frequency Response of a filter tells us exactly which frequencies it will enhance, and which it will reduce.

• A convolution is exactly the same thing as a **weighted local** average. We give it a special name, because we will use it very often. It's defined as:

$$y[n] = \sum_{m} g[m]f[n-m] = \sum_{m} g[n-m]f[m]$$

• We use the symbol * to mean "convolution:"

$$y[n] = g[n] * f[n] = \sum_{m} g[m]f[n-m] = \sum_{m} g[n-m]f[m]$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review 00●00	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary O
Review	v: Spectrum					

The **spectrum** of x(t) is the set of frequencies, and their associated phasors,

Spectrum
$$(x(t)) = \{(f_{-N}, a_{-N}), \dots, (f_0, a_0), \dots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

One reason the spectrum is useful is that **any** periodic signal can be written as a sum of cosines. Fourier's theorem says that any x(t) that is periodic, i.e.,

$$x(t+T_0)=x(t)$$

can be written as

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$$

which is a special case of the spectrum for periodic signals: $f_k = kF_0$, and $a_k = X_k$, and

$$F_0 = \frac{1}{T_0}$$

- Review
 Frequency Response
 Example
 Superposition
 Example
 Linearity
 Summary

 0000
 0000
 0000
 0000
 0000
 00
 0
 0
 0
 - Fourier Series Analysis (finding the spectrum, given the waveform):

$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

• Fourier Series Synthesis (finding the waveform, given the spectrum):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

• DFT Analysis (finding the spectrum, given the waveform):

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$$

• **DFT Synthesis** (finding the waveform, given the spectrum):

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}$$

Review 00000	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary O
Outlin	е					

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Review: Convolution and Fourier Series
- 2 Frequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- 5 Example: First Difference
- 6 Linearity

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
	0000					

Frequency Response

The **frequency response**, $G(\omega)$, of a filter g[n], is its output in response to a pure tone, expressed as a function of the frequency of the tone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Review
 Frequency Response
 Example
 Superposition
 Example
 Linearity
 Summary of the second sec

• Output of the filter:

$$y[n] = g[n] * x[n]$$
$$= \sum_{m} g[m]x[n-m]$$

• in response to a pure tone:

$$x[n] = e^{j\omega n}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Review Frequency Response Example Superposition Example Linearity Summary Calculating the Frequency Response

Output of the filter in response to a pure tone:

V

$$egin{aligned} & f[n] = \sum_m g[m] x[n-m] \ & = \sum_m g[m] e^{j\omega(n-m)} \ & = e^{j\omega n} \left(\sum_m g[m] e^{-j\omega m} \right) \end{aligned}$$

Notice that the part inside the parentheses is not a function of n. It is not a function of m, because the m gets summed over. It is only a function of ω . It is called the frequency response of the filter, $G(\omega)$.

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
	0000					

Frequency Response

When the input to a filter is a pure tone,

$$x[n]=e^{j\omega n},$$

then its output is the same pure tone, scaled and phase shifted by a complex number called the **frequency response** $G(\omega)$:

$$y[n] = G(\omega)e^{j\omega n}$$

The frequency response is related to the impulse response as

$$G(\omega) = \sum_{m} g[m] e^{-j\omega m}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Review 00000	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary O
Outlin	e					

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Review: Convolution and Fourier Series

- Prequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- 5 Example: First Difference
- 6 Linearity

Remember that taking the difference between samples can be written as a convolution:

$$y[n] = x[n] - x[n-1] = g[n] * x[n],$$

where

$$g[n] = egin{cases} 1 & n=0 \ -1 & n=1 \ 0 & ext{otherwise} \end{cases}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Review Frequency Response Example Superposition Example Linearity Summary oooo oooo oooo oooo oooo oooo oooo oo Example: First Difference

Suppose that the input is a pure tone:

$$x[n] = e^{j\omega n}$$

Then the output will be

$$y[n] = x[n] - x[n-1]$$

= $e^{j\omega n} - e^{j\omega(n-1)}$
= $G(\omega)e^{j\omega n}$,

where

$$G(\omega) = 1 - e^{-j\omega}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\begin{array}{c|ccccc} \hline Review & Frequency Response & Example & Superposition & Example & Linearity & Summary \\ \hline 0000 & 0000 & 0000 & 0000 & 00 \\ \hline \end{array}$

$$G(\omega) = 1 - e^{-j\omega}$$

• Frequency $\omega = 0$ means the input is a constant value:

$$x[n] = e^{j\omega n}|_{\omega=0} = 1$$

• At frequency $\omega = 0$, the frequency response is zero!

$$G(0) = 1 - e^0 = 0$$

• ... which totally makes sense, because if x[n] = 1, then

$$y[n] = x[n] - x[n-1] = 1 - 1 = 0$$

(日) (日) (日) (日) (日) (日) (日) (日)

$\begin{array}{c|cccc} \hline Review \\ \hline 0000 \end{array} & \hline Frequency Response \\ \hline 0000 \end{array} & \hline 0000 \end{array} & \hline Superposition \\ \hline Superposition \\$

• Frequency $\omega = \pi$ means the input is $(-1)^n$:

$$x[n] = e^{j\pi n} = (-1)^n = egin{cases} 1 & n ext{ is even} \ -1 & n ext{ is odd} \end{cases}$$

• At frequency $\omega = \pi$, the frequency response is two!

$$G(\pi) = 1 - e^{j\pi} = 1 - (-1) = 2$$

• ... which totally makes sense, because if $x[n] = (-1)^n$, then

$$y[n] = x[n] - x[n-1] = egin{cases} 1 - (-1) = 2 & n ext{ is even} \\ (-1) - 1 = -2 & n ext{ is odd} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

$\begin{array}{c|cccc} \hline Review & Frequency Response & Example & Superposition & Example & Linearity & Summary \\ \hline 0000 & 0000 & 0000 & 0000 & 00 & 0 \\ \hline First Difference Filter at <math>\omega = \frac{\pi}{2} \end{array}$

Frequency $\omega = \frac{\pi}{2}$ means the input is j^n :

$$x[n] = e^{j\frac{\pi n}{2}} = j^n = \begin{cases} 1 & n \in \{0, 4, 8, 12, \ldots\} \\ j & n \in \{1, 5, 9, 13, \ldots\} \\ -1 & n \in \{2, 6, 10, 14, \ldots\} \\ -j & n \in \{3, 7, 11, 15, \ldots\} \end{cases}$$

The frequency response is:

$$G\left(\frac{\pi}{2}\right) = 1 - e^{j\frac{\pi}{2}} = 1 - j,$$

so y[n] is

$$y[n] = (1-j)e^{j\frac{\pi n}{2}} = (1-j)j^n = \begin{cases} (1-j) & n \in \{0,4,8,12,\ldots\}\\ (j+1) & n \in \{1,5,9,13,\ldots\}\\ (-1+j) & n \in \{2,6,10,14,\ldots\}\\ (-j-1) & n \in \{3,7,11,15,\ldots\} \end{cases}$$

Review 00000	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary O
Outlin	e					

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Review: Convolution and Fourier Series

- Prequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- 5 Example: First Difference
- 6 Linearity

7 Summary

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
			0000			

Superposition and the Frequency Response

The frequency response obeys the principle of **superposition**, meaning that if the input is the sum of two pure tones:

$$x[n] = e^{j\omega_1 n} + e^{j\omega_2 n},$$

then the output is the sum of the same two tones, each scaled by the corresponding frequency response:

$$y[n] = G(\omega_1)e^{j\omega_1 n} + G(\omega_2)e^{j\omega_2 n}$$

There are no complex exponentials in the real world. Instead, we'd like to know the output in response to a cosine input. Fortunately, a cosine is the sum of two complex exponentials:

$$x[n] = \cos(\omega n) = \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{-j\omega n},$$

therefore,

$$y[n] = \frac{G(\omega)}{2}e^{j\omega n} + \frac{G(-\omega)}{2}e^{-j\omega n}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Review Frequency Response Example Superposition Example Linearity Summary 0000 0000 0000 0000 00000 00000 00000 Response to a Cosine

What is $G(-\omega)$? Remember the definition:

$$G(\omega) = \sum_m g[m] e^{-j\omega m}$$

Replacing every ω with a $-\omega$ gives:

$$G(-\omega)=\sum_m g[m]e^{j\omega m}.$$

Notice that g[m] is real-valued, so the only complex number on the RHS is $e^{j\omega m}$. But

$$e^{j\omega m} = \left(e^{-j\omega m}\right)^*$$

so

$$G(-\omega) = G^*(\omega)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
			0000			

Response to a Cosine

$$y[n] = \frac{G(\omega)}{2}e^{j\omega n} + \frac{G^*(\omega)}{2}e^{-j\omega n}$$

= $\frac{|G(\omega)|}{2}e^{j\angle G(\omega)}e^{j\omega n} + \frac{|G(\omega)|}{2}e^{-j\angle G(\omega)}e^{-j\omega n}$
= $\frac{|G(\omega)|}{2}e^{j(\omega n + \angle G(\omega))} + \frac{|G(\omega)|}{2}e^{-j(\omega n + \angle G(\omega))}$
= $|G(\omega)|\cos(\omega n + \angle G(\omega))$

Magnitude and Phase Responses

- The Magnitude Response |G(ω)| tells you by how much a pure tone at ω will be scaled.
- The Phase Response ∠G(ω) tells you by how much a pure tone at ω will be advanced in phase.

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
00000		00000	0000	000000	00	O
Outlin	ie					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Review: Convolution and Fourier Series
- Prequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- 5 Example: First Difference
- 6 Linearity

7 Summary

Review Frequency Response Example Superposition Example Linearity Summary 0000 0000 0000 0000 0000 0000 0 0 Example: First Difference First Difference First Difference First Difference First Difference

Remember that the first difference, y[n] = x[n] - x[n-1], is supposed to sort of approximate a derivative operator:

$$y(t) pprox rac{d}{dt} x(t)$$

If the input is a cosine, what is the output?

$$\frac{d}{dt}\cos\left(\omega t\right) = -\omega\sin\left(\omega t\right) = \omega\cos\left(\omega t + \frac{\pi}{2}\right)$$

Does the first-difference operator behave the same way (multiply by a magnitude of $|G(\omega)| = \omega$, phase shift by $+\frac{\pi}{2}$ radians so that cosine turns into negative sine)?

Frequency response of the first difference filter is

$${\it G}(\omega)=1-e^{-j\omega}$$

Let's try to convert it to polar form, so we can find its magnitude and phase:

$$G(\omega) = e^{-j\frac{\omega}{2}} \left(e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}} \right)$$
$$= e^{-j\frac{\omega}{2}} \left(2j\sin\left(\frac{\omega}{2}\right) \right)$$
$$= \left(2\sin\left(\frac{\omega}{2}\right) \right) \left(e^{j\left(\frac{\pi-\omega}{2}\right)} \right)$$

So the magnitude and phase response are:

$$|G(\omega)| = 2\sin\left(\frac{\omega}{2}\right)$$

 $\angle G(\omega) = \frac{\pi - \omega}{2}$

Review Frequency Response Example Superposition Example Linearity Summary 0000 0000 0000 000 00 00 00 00 First Difference: Magnitude Response

Taking the derivative of a cosine scales it by ω . The first-difference filter scales it by $|G(\omega)| = 2\sin(\omega/2)$, which is almost the same, but not quite:

(日)、

э

Review Frequency Response Example Superposition Example Linearity Summary 0000 0000 0000 000 000 000 00 00 First Difference: Phase Response

Taking the derivative of a cosine shifts it, in phase, by $+\frac{\pi}{2}$ radians, so that the cosine turns into a negative sine. The first-difference filter shifts it by $\angle G(\omega) = \frac{\pi - \omega}{2}$, which is almost the same, but not quite.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Review Frequency Response Example Superposition Example Linearity Summary 0000 0000 0000 0000 0000 0000 0000 0000 First Difference: All Together

Putting it all together, if the input is $x[n] = cos(\omega n)$, the output is

$$y[n] = |G(\omega)|\cos(\omega n + \angle G(\omega)) = 2\sin\left(\frac{\omega}{2}\right)\cos\left(\omega n + \frac{\pi - \omega}{2}\right)$$

- At frequency $\omega = 0$, the phase shift is exactly $\frac{\pi}{2}$, so the output is turned from cosine into -sine (but with an amplitude of 0!)
- At frequency $\omega = \pi$, the phase shift is 0! So the output is just a cosine at twice the amplitude.
- In between, $0 < \omega < \pi$,
 - The amplitude gradually increases, while
 - the phase gradually shifts, from a -sine function back to a cosine function.

Review Frequency Response Example Superposition Example Linearity Summary 0000 0000 0000 0000 0000 000 000 000 First Difference: All Together

Putting it all together, if the input is $x[n] = cos(\omega n)$, the output is

$$y[n] = |G(\omega)|\cos(\omega n + \angle G(\omega)) = 2\sin\left(\frac{\omega}{2}\right)\cos\left(\omega n + \frac{\pi - \omega}{2}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
00000		00000	0000	000000	00	O
Outline						

- 1 Review: Convolution and Fourier Series
- Prequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- **5** Example: First Difference

Review	Frequency Response	Example	Superposition	Example	Linearity	Summary
					00	

Linearity

Filters are linear: if you scale the input, the output also scales. Thus if

$$x[n] = Ae^{j\omega_1 n} + Be^{j\omega_2 n},$$

then the output is the sum of the same two tones, each scaled by the corresponding frequency response:

$$y[n] = G(\omega_1)Ae^{j\omega_1 n} + G(\omega_2)Be^{j\omega_2 n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Review Frequency Response Example Superposition Example Linearity Summary Occoor Occoor Occoor Occoor Occoor Occoor Occoor Occoor Response to a Cosine Image: Cosine Image: Cosine Image: Cosine Image: Cosine Image: Cosine

Linearity applies to complex numbers, not just real numbers! So if

$$x[n] = A\cos(\omega n + \theta) = \frac{A}{2}e^{j(\omega n + \theta)} + \frac{A}{2}e^{-j(\omega n + \theta)},$$

then

$$y[n] = \frac{AG(\omega)}{2}e^{j(\omega n+\theta)} + \frac{AG^{*}(\omega)}{2}e^{-j(\omega n+\theta)}$$
$$= \frac{A|G(\omega)|}{2}e^{j(\omega n+\theta+\angle G(\omega))} + \frac{A|G(\omega)|}{2}e^{-j(\omega n+\theta+\angle G(\omega))}$$
$$= A|G(\omega)|\cos(\omega n+\theta+\angle G(\omega))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Review 00000	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary O
Outlin	e					

- 1 Review: Convolution and Fourier Series
- 2 Frequency Response
- 3 Example: First Difference
- 4 Superposition and the Frequency Response
- **5** Example: First Difference
- 6 Linearity

Review 00000	Frequency Response	Example 00000	Superposition	Example 000000	Linearity 00	Summary •
Summary						

 $\bullet~\mbox{Tones}~\mbox{in}~\rightarrow~\mbox{Tones}~\mbox{out}$

$$\begin{aligned} x[n] &= e^{j\omega n} \to y[n] = G(\omega)e^{j\omega n} \\ x[n] &= \cos(\omega n) \to y[n] = |G(\omega)|\cos(\omega n + \angle G(\omega)) \\ x[n] &= A\cos(\omega n + \theta) \to y[n] = A|G(\omega)|\cos(\omega n + \theta + \angle G(\omega)) \end{aligned}$$

• where the Frequency Response is given by

$$G(\omega) = \sum_{m} g[m] e^{-j\omega m}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ