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Review: Energy Spectrum and Parseval’s Theorem

The energy spectrum of a random noise signal has the DTFT
form |X (ω)|2, or the DFT form |X [k]|2.

The easiest form of Parseval’s theorem to memorize is the
DTFT energy spectrum form:

∞∑
n=−∞

x2[n] =
1

2π

∫ π

−π
|X (ω)|2dω

The DFT energy spectrum form is similar, but over a finite
duration:

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

|X [k]|2
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Review: Power Spectrum and Parseval’s Theorem

Energy of an infinite-length signal might be infinite. Wiener
defined the power spectrum in order to solve that problem:

Rxx(ω) = lim
N→∞

1

N
|X (ω)|2

where X (ω) is computed from a window of length N samples. The
DTFT power spectrum form of Parseval’s theorem is

lim
N→∞

1

N

(N−1)/2∑
n=−(N−1)/2

x2[n] =
1

2π

∫ π

−π
Rxx(ω)dω
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White Noise

White noise is a type of noise whose samples are uncorrelated
(E [x [n]x [m]] = E [x [n]]E [x [m]], unless n = m). If it is also
zero mean and unit variance, then

E [x [n]x [m]] =

{
1 n = m

0 n 6= m

The Fourier transform of any zero-mean random signal is,
itself, a zero-mean random variable:

E [X (ω)] = 0

The power spectrum is also a random variable, but its
expected value is not zero. The expected power spectrum of
white noise is flat, like white light:

E [Rxx(ω)] = E

[
1

N
|X (ω)|2

]
= 1
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Example: DTFT and Power Spectrum of White Noise



Review Autocorrelation Autocorrelation Spectrum Parseval Example Summary

Example: Expected DTFT and Power Spectrum of White
Noise
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Colored Noise

Most colored noise signals are well modeled as filtered white
noise, i.e., y [n] = h[n] ∗ x [n]. The filtering means that the
samples of y [n] are correlated with one another.

If x [n] is zero-mean, then so is y [n], and so is Y (ω):

E [Y (ω)] = 0

The expected power spectrum is |H(ω)|2:

E [Ryy (ω)] = E

[
1

N
|Y (ω)|2

]
= |H(ω)|2
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Example: Filtered Noise
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Finite-Duration Power Spectrum

In practice, we will very often compute the power spectrum from a
finite-length window:

Rxx(ω) =
1

N
|X (ω)|2, Rxx [k] =

1

N
|X [k]|2

where X (ω) is computed from a window of length N samples. The
DTFT power spectrum form of Parseval’s theorem is then

1

N

N−1∑
n=0

x2[n] =
1

2π

∫ π

−π
Rxx(ω)dω =

1

N

N∑
k=0

Rxx [k]



Review Autocorrelation Autocorrelation Spectrum Parseval Example Summary

Inverse DTFT of the Power Spectrum

Since the power spectrum of noise is MUCH more useful than the
expected Fourier transform, let’s see what the inverse Fourier
transform of the power spectrum is. Let’s call Rxx(ω) the power
spectrum, and rxx [n] its inverse DTFT.

Rxx(ω) =
1

N
|X (ω)|2 =

1

N
X (ω)X ∗(ω)

where X ∗(ω) means complex conjugate. Since multiplying the
DTFT means convolution in the time domain, we know that

rxx [n] =
1

N
x [n] ∗ z [n]

where z [n] is the inverse transform of X ∗(ω) (we haven’t figured
out what that is, yet).
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Inverse DTFT of the Power Spectrum

So what’s the inverse DFT of X ∗(ω)? If we assume that x [n] is
real, we get that

X ∗(ω) =

( ∞∑
n=−∞

x [n]e−jωn

)∗

=
∞∑

n=−∞
x [n]e jωn

=
∞∑

m=−∞
x [−m]e−jωm

So if x [n] is real, then the inverse DTFT of X ∗(ω) is x [−n]!
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Autocorrelation

The power spectrum, of an N-sample finite-length signal, is

Rxx(ω) =
1

N
|X (ω)|2

Its inverse Fourier transform is the autocorrelation,

rxx [n] =
1

N
x [n] ∗ x [−n] =

1

N

∞∑
m=−∞

x [m]x [m − n]

This relationship, rxx [n]↔ Rxx(ω), is called Wiener’s theorem,
named after Norbert Wiener, the inventor of cybernetics.
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Example: Autocorrelation of White Noise
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A warning about python

Notice, on the last slide, I defined autocorrelation as

rxx [n] =
1

N
x [n] ∗ x [−n] =

1

N

∞∑
m=−∞

x [m]x [m − n]

Python defines an “energy version” of autocorrelation, instead of
the “power version” shown above, i.e., np.correlate computes:

rpython[n] =
∞∑

m=−∞
x [m]x [m − n]

The difference is just a constant factor (N), so it usually isn’t
important. But sometimes you’ll need to be aware of it.
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Autocorrelation is also a random variable!

Notice that, just as the power spectrum is a random variable,
the autocorrelation is also a random variable.

The autocorrelation is the average of N consecutive products,
thus

E [rxx [n]] = E

[
1

N

N−1∑
m=0

x [m]x [m − n]

]
= E [x [m]x [m − n]]

The expected autocorrelation is related to the covariance and
the mean:

E [rxx [n]] = Cov (x [m], x [m − n]) + E [x [m]]E [x [m − n]]

If x [n] is zero-mean, that means

E [r [n]] = Cov (x [m], x [m − n])
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Autocorrelation of white noise

If x [n] is zero-mean white noise, with a variance of σ2, then

E [rxx [n]] = E [x [m]x [m − n]] =

{
σ2 n = 0

0 otherwise

We can write
E [r [n]] = σ2δ[n]
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Filtered Noise

What happens when we filter noise? Suppose that x [n] is
zero-mean white noise, and

y [n] = h[n] ∗ x [n]

What is y [n]?
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Example: Filtering of White Noise
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Filtered Noise

y [n] = h[n] ∗ x [n] =
∞∑

m=−∞
h[m]x [n −m]

y [n] is the sum of zero-mean random variables, so it’s also
zero-mean.

y [n] = h[0]x [n] + other stuff, and
y [n + 1] = h[1]x [n] + other stuff. So obviously, y [n] and
y [n + 1] are not uncorrelated. So y [n] is not white noise.

What kind of noise is it?
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The variance of y [n]

First, let’s find its variance. Since x [n] and x [n + 1] are
uncorrelated, we can write

σ2y =
∞∑

m=−∞
h2[m]Var(x [n −m])

= σ2x

∞∑
m=−∞

h2[m]
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The autocorrelation of y [n]

Second, let’s find its autocorrelation. Let’s define
rxx [n] = 1

N x [n] ∗ x [−n]. Then

ryy [n] =
1

N
y [n] ∗ y [−n]

=
1

N
(x [n] ∗ h[n]) ∗ (x [−n] ∗ h[−n])

=
1

N
x [n] ∗ x [−n] ∗ h[n] ∗ h[−n]

= rxx [n] ∗ h[n] ∗ h[−n]
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Example: Autocorrelation of Colored Noise
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Expected autocorrelation of y [n]

ryy [n] = rxx [n] ∗ h[n] ∗ h[−n]

Expectation is linear, and convolution is linear, so

E [ryy [n]] = E [rxx [n]] ∗ h[n] ∗ h[−n]
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Expected autocorrelation of y [n]

x [n] is zero-mean white noise if and only if its autocorrelation is a
delta function:

E [rxx [n]] = σ2xδ[n]

If y [n] = h[n] ∗ x [n], and x [n] is zero-mean white noise, then

E [ryy [n]] = σ2x (h[n] ∗ h[−n])

In other words, x [n] contributes only its energy (σ2x). h[n]
contributes the correlation between neighboring samples.
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Example: Expected Autocorrelation of Colored Noise
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Example

Here’s an example. The white noise signal on the top (x [n]) is
convolved with the bandpass filter in the middle (h[n]) to produce
the green-noise signal on the bottom (y [n]). Notice that y [n] is
random, but correlated.



Review Autocorrelation Autocorrelation Spectrum Parseval Example Summary

Example

Here’s another example. The white noise signal on the left (x [n])
is convolved with an ideal lowpass filter, with a cutoff at π/2, to
create the pink-noise signal on the right (y [n]). Notice that y [n] is
random, but correlated.
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Example

Here’s a third example. The white noise signal on the left (x [n]) is
convolved with an ideal highpass filter, with a cutoff at π/2, to
create the blue-noise signal on the right (y [n]). Here, it’s a lot less
obvious that the samples of y [n] are correlated with one another,
but they are: in fact, they are negatively correlated. If y [n] > 0,
then y [n + 1] < 0 with a probability greater than 50%.
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Power Spectrum of Filtered Noise

So we have ryy [n] = rxx [n] ∗ h[n] ∗ h[−n]. What about the power
spectrum?

Ryy (ω) = F {ryy [n]}
= F {rxx [n] ∗ h[n] ∗ h[−n]}
= Rxx(ω)|H(ω)|2
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Example

Here’s an example. The white noise signal on the top (|X [k]|2) is
multiplied by the bandpass filter in the middle (|H[k]|2) to produce
the green-noise signal on the bottom (|Y [k]|2 = |X [k]|2|H[k]|2).
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Units Conversion

The DTFT version of Parseval’s theorem, assuming a finite window
of length N samples, is

1

N

∑
n

x2[n] =
1

2π

∫ π

−π
Rxx(ω)dω

Let’s consider converting units to Hertz. Remember that ω = 2πf
Fs

,

where Fs is the sampling frequency, so dω = 2π
Fs
df , and we get that

1

N

∑
n

x2[n] =
1

Fs

∫ Fs/2

−Fs/2
Rxx

(
2πf

Fs

)
df

So we can use Rxx

(
2πf
Fs

)
as if it were a power spectrum in

continuous time, at least for −Fs
2 < f < Fs

2 .
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Example: Power Spectrum of Colored Noise
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Example: Expected Power Spectrum of Colored Noise
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Parseval’s Theorem

Now we have everything we need to prove Parseval’s theorem.
Let’s prove the DTFT power form of the theorem, for a
finite-length signal:

1

N

N−1∑
n=0

x2[n] =
1

2π

∫ π

−π
Rxx(ω)dω

where

Rxx(ω) =
1

N
|X (ω)|2
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Parseval’s Theorem

1

N

N−1∑
n=0

x2[n] =
1

2π

∫ π

−π
Rxx(ω)dω

Notice that the left-hand side is the autocorrelation, with a lag of
0:

rxx [m] =
1

N

N−1∑
n=0

x [n]x [n −m]

So Parseval’s theorem is just saying that

rxx [0] =
1

2π

∫ π

−π
Rxx(ω)dω
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Wiener’s Theorem

Wiener’s theorem says that the power spectrum is the Fourier
transform of the autocorrelation:

rxx [n] =
1

2π

∫ π

−π
Rxx(ω)e jωndω

But notice what happens if we plug in n = 0:

rxx [0] =
1

2π

∫ π

−π
Rxx(ω)dω

Q.E.D.
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Example: Autocorrelation of White Noise
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Example: Power Spectrum of White Noise
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Example: Expected Power Spectrum of White Noise



Review Autocorrelation Autocorrelation Spectrum Parseval Example Summary

Example: Filtering of White Noise
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Example: Power Spectra of White and Colored Noises
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Example: Autocorrelation of Colored Noise
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Example: Power Spectrum of Colored Noise
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Example: Expected Power Spectrum of Colored Noise
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Wiener’s Theorem and Parseval’s Theorem

Wiener’s theorem says that the power spectrum is the DTFT
of autocorrelation:

rxx [n] =
1

2π

∫ π

−π
Rxx(ω)e jωndω

Parseval’s theorem says that average power in the time
domain is the same as average power in the frequeny domain:

rxx [0] =
1

2π

∫ π

−π
Rxx(ω)dω
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Filtered Noise

If y [n] = h[n] ∗ x [n], x [n] is any noise signal, then

ryy [n] = rxx [n] ∗ h[n] ∗ h[−n]

Ryy (ω) = Rxx(ω)|H(ω)|2
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White Noise and Colored Noise

If x [n] is zero-mean unit variance white noise, and
y [n] = h[n] ∗ x [n], then

E [rxx [n]] = δ[n]

E [Rxx(ω)] = 1

E [ryy [n]] = h[n] ∗ h[−n]

E [Ryy (ω)] = |H(ω)|2
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