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Wiener's Theorem and Parseval's Theorem

@ Wiener's theorem says that the power spectrum is the DTFT
of autocorrelation:

r[n] = 1/ Rex(w)e/“dw

or J_,
@ Parseval's theorem says that energy in the time domain is the
average of the energy spectrum:

o0 T

S ] = 217r/ X (w)[2dw
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Filtered Noise

If y[n] = h[n] * x[n], x[n] is any signal, then

ryy[n] = rwn] * h[n] * h[—n]
Ry (w) = Ruc(w)|H(w)?
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The Wiener Filter

_E [Rex(w)]

E[S(@)X* ()]
V)= ElR ()]

X = Ex@xe @)

@ The numerator, Rsc(w), makes sure that y[n] is predicted
from x[n] as well as possible (same correlation,
E [ryx[nl] = E [rs<[n]]).

@ The denominator, Ry (w), divides out the noise power, so that
y[n] has the same expected power as s[n].
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Power Spectrum and Cross-Power Spectrum

Remember that the power spectrum is defined to be the Fourier
transform of the autocorrelation:

Rue(w) = J@m%|X(w)l2
ol = i gyt~

In the same way, we can define the cross-power spectrum to be
the Fourier transform of the cross-correlation:

Rsx(w) = Nll_r)noo %S(w)X*(w)

rsx[n] = Nlinoo %s[n] * x[—n]
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An Alternate Derivation of the Wiener Filter

The goal is to design a filter h[n| so that

y[nl = x[n] = hn]
in order to make y[n] as much like s[n] as possible. In other words,
let’s minimize the mean-squared error:

o0

&= 3" E|(slnl - yln))?

n—=—oo
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Use Parseval’'s Theorem!

In order to turn the convolutions into multiplications, let's use
Parseval’s theorem!

= 3 E|(slnl - ylnly]

n=—0o0

1 vy
=5 | E [15(w) = Y()P] dw
- % & [15(2) ~ HEX ()R] deo
1 T * *
£€=5 /7T (E[S(w)S™(w)] — H(W)E [X(w)S™(w)]

— E[S(w)X*(w)] H(w) + H(w)E [X(w) X" (w)] H* (w)) dw
Now let's try to find the minimum, by setting

d&
dH(w)

=0



Differentiate and Solve!

Differentiating by H(w) (and pretending that H*(w) stays
constant), we get

d&

dH(w) —E [X(w)S*(w)] dw + E [X(w)X*(w)] H*(w)dw

So we can set d(g y = = 0 if we choose

L EX(@)S(W)]
H @)= —Fix@)

or, equivalently,

E[S@)X*(@)] _ E[Ru(w)]
A= "FIX@F ~ E[Re@)
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© Wiener Filter for Uncorrelated Noise and Signal



What is X made of?

So here's the Wiener filter:

E[S()X*(w)]
A = = E X @)

But now let's break it down a little. What's X? That’s right, it's
S 4+ V — signal plus noise.

E[S()(S* () + V(@)
A = = X w)
E[|SW)1?] + EIS() V()
E[X(@)P]
_ E[Ru(w)] + E[Ru()]
E [RXX(W)]
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What if S and V are uncorrelated?

In most real-world situations, the signal and noise are uncorrelated,
SO we can write

E[S(@)VH ()] = E[S(W)] E[Vi(w)] =0



What if S and V are uncorrelated?

Similarly, if S and V are uncorrelated,
E[IX(@)P?] = E [IS(w) + V(w)P?]

= E [|SW)P] + E[S(@)V* ()] + E[S* (@) V()] + E [[V(w)P]
= E[IS()P?] + E[IV(w)P]
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Wiener Filter in the General Case

In the general case, the Wiener Filter is

_ E[Re(w)]

H) = ElR ()]

_ E[Rss(w)] + E[Rev(w)]
E [Rss(w)] = E [Rev(w)] — E [Rus(w)] + E [Ry (w)]

Wiener Filter for Uncorrelated Noise

If noise and signal are uncorrelated,

_ E [Rss(w)]
E [Ruc(w)]
_ E [Rss(w)]
E [Rss(W)] + E [va(w)]

H(w)
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Wiener Filter in the General Case

E|[R

H((JJ) — [ SX(w)]
E [Rec(w)]

@ In the general case, the numerator captures the correlation
between the noisy signal, x[n], and the desired clean signal
s[n].

@ The idea is to give y[n] the same correlation. We can't make
y[n] equal s[n] exactly, but we can give it the same statistical
properties as s[n|: specifically, make it correlate with x[n] the
same way.
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Wiener Filter for Correlated Noise

_E [Rss(w)]

H) = ElR ()]

o If s[n] and v[n] are uncorrelated, then the correlation between
the clean and noisy signals is exactly equal to the
autocorrelation of the clean signal:

E [rex[n]] = E [rss[n]]

@ So in that case, the Wiener filter is just exactly the desired,
clean power spectrum, E [Rss(w)], divided by the given,
noisy power spectrum E [Ry(w)],
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How can you compute expected value?

Finally: we need to somehow estimate the expected power spectra,
E [Rss(w)] and E [Ryx(w)]. How can we do that?

@ Generative model: if you know where the signal came from,
you might have a pencil-and-paper model of its statistics,
from which you can estimate Rss(w).

o Multiple experiments: If you have the luxury of running the
experiment 1000 times, that's actually the best way to do it.

@ Welch’s method: chop the signal into a large number of
small frames, computing |X(w)|? from each small frame, and
then average. As long as the signal statistics don't change
over time, this method works well.


https://ieeexplore.ieee.org/document/1161901
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Periodogram

Pros and Cons of Welch's b

Method a m ' '%
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Public domain image, 2016, Bob K, https://commons.wikimedia.org/wiki/File:
Comparison_of_periodogram_and_Welch_methods_of_spectral_density_estimation.png
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Summary

@ Wiener Filter in the General Case:

_ E[Rs(w)]
)= ElRuw)
@ Wiener Filter for Uncorrelated Noise:
_ E[Rss(w)]
)= ERo@)

@ Welch's Method: chop the signal into frames, compute
|X(w)|? for each frame, and then average them.
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