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Windowing Review

The following system implements a lowpass filter with a cutoff of

V= 3 xin—m Gy

We = %
m=-—17

Unfortunately, this filter lets through a lot of energy in the

stop-band. Design a filter, h[m], with the same complexity (35

multiplications per output sample), but with a lot less stop-band

ripple. Specify an h[m] that accomplishes this goal.
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DTFT Review

Remember the purpose of DTFT is to let us design filters with a
carefully specified frequency response:

y[n] = h[n] x x[n] +> Y (w) = H(w)X(w)

e}

Xw)= Y x[mle/*m

m=—0o0
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LCCDE

LCCDEs (linear constant coefficient difference equations) are a
large important class of linear time-invariant systems. An LCCDE
is defined by a set of feedforward coefficients b,,, 0 < m< M —1,
and a set of feedback coefficients a,, 1 < n< N —1:

M—1 N—1
y[n] = Z bmx[n — m] + Z apy[n — m]
m=0 n=1

For example, an FIR filter is a sub-class of LCCDE, with
bm = h[m]:

M—1
yrr[n] = Z h[m]x[n — m]
m=0
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LCCDE: the Feedback Term

The feedback term in an LCCDE allows it to represent certain
types of IIR (infinite impulse response) filters. For example,
consider

y[n] = x[n] + 0.9y[n — 1]

Notice that the impulse response of this system is

h[n] = (0.9)"u[n]
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LCCDE: Second Order Feedback

Or consider:
y[n] = 2asin(#)x[n — 1] 4+ 2acos()y[n — 1] — a®y[n — 2]

The impulse response of this system can be calculated to be...

0 n=20

2asin(0) n=1

hln] = 4a° sin(f) cos(#) = 2a°sin(26) n=2
) 4a3cos(0)sin(20) — 2asin() = 2a3sin(30) n=3

2a" sin(nb) n>0

The above analysis is kinda clever, but much too hard to be done
routinely. We need a better method to analyze feedback LCCDEs.
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Analysis of LCCDEs using DTFT

Remember that the DTFT is linear. Therefore we can take the
DTFT of both sides of this equation:

M—1 N—1
y[n] = Z bmx[n — m] + Z apy[n — m]
m=0 n=1

In order to get:

N-1

M-1
Y(@) =Y bnF {x[n—ml} + ) anF {y[n - m]}
m=0 n=1

where F {x[n]} means “the DTFT of x[n]". Obviously, the DTFT
of x[n] is X(w). But what is F {x[n — m]|}?
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Time-Shift Property of DTFT

Definition of the DTFT:

[e.9]

F{x[n—m]} = Z x[n — m]e "
Define k = n— m, so
Fixln—ml} = > x[kle Fketom
k=—00

Fix[n—m]} = e 7" X(w)
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Analysis of LCCDEs using DTFT

Using the time-shift property of the DTFT, we can transform both
sides of

M-1 N—-1
y[n] = Z bmx[n — m] + Z any[n — m]
m=0 n=1

In order to get:

-1

M N—-1
Y(w) =) bme TX(w) + D ane Y (w)
m=0 n=1

% M-1 b —jwm
Withalittlealgebra, weget () = Zm:,\(,) 1me -
X(w) 1M1, e—jwm

m=0
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Analysis of LCCDEs using DTFT

But remember the convolution property of the DTFT:
Y(w) = Hw)X(w)! So

M—-1 —jwm
Zm:O bme /

1— Zrl\rll;é ame —Jjwm

ble] =77 { > meo bme=iem }

N—1 —
1—> —pame/em

H(w) =

Therefore

where F~! means “inverse Fourier transform of.” In other words,
if we knew how to inverse transform that thing, then we would
know h[n]. Unfortunately, we don't know how to inverse transform
that thing. .. and so we invent the “Z transform” to help us figure
It out.
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Really, the Z transform is just a way to write the DTFT using
fewer letters. Instead of writing

o0

X(w)= > x[nle ™"

n=—oo

we write
oo

X(z) = Z x[n]z™"

n=—0o0
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In particular, the time-shift property of the Z transform is exactly
the same as the DTFT one, but with fewer letters:

Fix[n—m]} = e "X (w), Z{x[n—m]}=z"X(z2)

So instead of
ZM*]. bme—jwm

H(w) = m=0 :
) T e
we have Vet
H(Z) _ Zm:O bmzim

C1- SN gz

m=0
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Z Transform of an Exponential Signal

Turning e/ into z is useful for a very small, but very important,
set of signals. Specifically, it's useful for exponential signals. For
example, suppose

x[n] = a"u[n]

Then
X(z) = > x[nz"
n=—o00
— Zanz—n
n=0
1 _ 1
X(2) ,  which means that X(w) =

11— geJw
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Z Transform of Sine Wave

A particular kind of exponential signal that's really, really useful is
the one called a “sine wave:"

x[n] = 2a" sin(6n)u[n]
Then -
X(Z) _ " ej@n _ e—j@n Zn
> ( )

1 1 2a sin(9)z*1

T 1-—aelfz 1 1—ae 0z 1 (1—aelfz 1)(1—ae Jfz 1)

X(z)

...and you can kinda see why we like writing z instead of e/* all
the time. It just saves space, really that's the main reason. ..
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Z Transform of Cosiune

Another useful kind of exponential is the one called a “cosine:”

x[n] = 23" cos(On)u[n]

Then -
X(z) = Z a" (ejen + efje”) z7"
n=0
1 1 2 —2acos(f)z 71
(2) 1—aef7 1 1—aedoz1 (1 — aelfz71)(1 — aei92-1)
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The Only Z Transform Pairs that Matter

x[n] = d[n] <> X(z2) =1
1

X[n] = anu[n] <> X(Z) = 1_73271

2asin(f)z 71
(1—aelfz71)(1 — ae=40z71)

2 —2acos(f)z71
(1 — ae/fz1)(1 — ae—0z-1)
Obviously, these transform pairs relate to the feedback LCCDEs
we've solved so far. Let's explore the connection next time.

x[n] = 2a"sin(0n)u[n] < X(z) =

x[n] = 2a" cos(On)u[n] +» X(z) =
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