Lecture 16: Zeros and Poles

ECE 401: Signal and Image Analysis

University of Illinois

4/6/2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Poles and Zeros with Nonzero Bandwidth

Oles and Zeros with Nonzero Center Frequency

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶ ▲

Outline

2 Poles and Zeros with Nonzero Bandwidth

3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

- 4 ロ ト 4 屈 ト 4 匡 ト - 匡 - の 9 9 9

Z Transform of a Unit Step

What's the Z transform of

$$u[n] = \left\{ egin{array}{cc} 1 & n \geq 0 \\ 0 & ext{otherwise} \end{array}
ight.$$

Let's find out:

$$U(z) = \sum_{n=-\infty}^{\infty} u[n] z^{-n} = \sum_{n=-\infty}^{\infty} z^{-n} = \frac{1}{1 - z^{-1}}$$

This corresponds to

$$U(\omega) = \frac{1}{1 - e^{-j\omega}}$$

-

Notice that when $\omega = 0$, $|U(\omega)| = 1/(1-1) = 1/0 = \infty$. We say U(z) has a **pole** at $\omega = 0$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Filter with a Zero at DC

Consider the following filter:

$$y[n] = x[n] - x[n-1]$$

$$Y(z) = X(z) - z^{-1}X(z) = (1 - z^{-1})X(z)$$

$$H(z) = 1 - z^{-1}, \quad H(\omega) = 1 - e^{-j\omega}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Notice that when $\omega = 0$, $|H(\omega)| = 0$. We say that H(z) has a **zero** at $\omega = 0$.

Pole-Zero Cancellation

What happens when a pole meets a zero? Let's find out. Let's put x[n] = u[n] into

$$y[n] = u[n] - u[n - 1]$$
$$U(z) = \frac{1}{1 - z^{-1}}, \quad H(z) = (1 - z^{-1})$$
$$Y(z) = H(z)U(z) = \frac{1 - z^{-1}}{1 - z^{-1}} = 1$$

So y[n] is the inverse Z-transform of Y(z) = 1, which is $y[n] = \delta[n]$But we could have figured that out directly from the system equation!

A Filter with a Pole

Let's find the transfer function for this system:

$$y[n] = x[n] + y[n-1]$$

$$Y(z) = X(z) + z^{-1}Y(z)$$

$$Y(z)(1 - z^{-1}) = X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So this is a **transfer function** with a pole at $\omega = 0!$

Pole-Pole Coincidence

What happens when a pole in the input (X(z)) meets a pole in the transfer function (H(z))? Let's use u[n] as the input to this system:

$$y[n] = u[n] + y[n-1]$$

By plugging u[n] into that equation directly, we discover that

$$y[n] = (n+1)u[n]$$

...which is almost certainly a **very bad thing**, because it grows without bound (we sometimes say it is "unbounded" or it "goes to infinity"). The Z transform is:

$$Y(z) = \frac{1}{1 - z^{-1}} U(z) = \frac{1}{(1 - z^{-1})^2}$$

So it has **two poles** at $\omega = 0$. We have learned that when Y(z) has two poles at the same frequency, then y[n] goes to infinity.

Sac

Summary so far: Poles and Zeros

- When X(z) has a pole at some frequency, and H(z) has a zero at the same frequency (or vice versa!!), then the pole and zero cancel.
- When X(z) and H(z) both have poles at the same frequency, then y[n] goes to infinity.

Summary so far: Useful Z Transform Pairs

y[n]	Y(z)	Zeros	Poles
$\delta[n] - \delta[n-1]$	$(1 - z^{-1})$	One at $\omega = 0$	None
$\delta[n]$	1	None	None
u[n]	$rac{1}{(1-z^{-1})}$	None	One at $\omega=0$
(n+1)u[n]	$\frac{1}{(1-z^{-1})^2}$	None	Two at $\omega=0$

(ロ)、(型)、(E)、(E)、 E) の(の)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

Poles and Zeros at DC

2 Poles and Zeros with Nonzero Bandwidth

3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Z Transform of an Exponential

What's the Z transform of

$$x[n] = e^{-Bn}u[n] = \begin{cases} e^{-Bn} & n \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Let's find out:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} = \sum_{n = -\infty}^{\infty} e^{-Bn} z^{-n} \frac{1}{1 - e^{-B} z^{-1}}$$

This corresponds to

$$U(\omega) = rac{1}{1 - e^{-(B + j\omega)}}; \quad U(0) = rac{1}{1 - e^{-B}}, \quad U(B) = rac{1}{1 - e^{-B(1 + j)}} pprox rac{1}{\sqrt{2}},$$

We say that this signal has a **pole of bandwidth B** at $\omega = 0$.

・ロト ・西ト ・ヨト ・ヨー うらぐ

Filter with a Zero at DC

Consider the following filter:

$$y[n] = x[n] - e^{-B}x[n-1]$$

$$Y(z) = X(z) - e^{-B}z^{-1}X(z) = (1 - e^{-B}z^{-1})X(z)$$

$$H(z) = 1 - e^{-B}z^{-1}, \quad H(\omega) = 1 - e^{-(B+j\omega)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We say that H(z) has a zero of bandwidth **B** at $\omega = 0$.

Pole-Zero Cancellation

What happens when a pole meets a zero? Let's find out. Let's put $x[n] = e^{-Bn}u[n]$ into

$$y[n] = x[n] - e^{-B}x[n-1]$$
$$U(z) = \frac{1}{1 - e^{-B}z^{-1}}, \quad H(z) = (1 - e^{-B}z^{-1})$$
$$Y(z) = H(z)U(z) = \frac{1 - e^{-B}z^{-1}}{1 - e^{-B}z^{-1}} = 1$$

So y[n] is the inverse Z-transform of Y(z) = 1, which is $y[n] = \delta[n]$But we could have figured that out directly from the system equation!

A Filter with a Pole

Let's find the transfer function for this system:

$$y[n] = x[n] + e^{-B}y[n-1]$$

$$Y(z) = X(z) + e^{-B}z^{-1}Y(z)$$

$$Y(z)(1 - e^{-B}z^{-1}) = X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - e^{-B}z^{-1}}$$

So this is a transfer function with a pole of bandwidth B at $\omega = 0!$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Pole-Pole Coincidence

What happens when a pole in the input (X(z)) meets a pole in the transfer function (H(z))? Let's use $e^{-Bn}u[n]$ as the input to this system:

$$y[n] = u[n] + e^{-B}y[n-1]$$

By plugging u[n] into that equation directly, we discover that

$$y[n] = (n+1)e^{-Bn}u[n]$$

This is OK, as long as B > 0. As long as B > 0, the output y[n] will rise and then fall again. The Z transform is:

$$Y(z) = \frac{1}{1 - e^{-B}z^{-1}}U(z) = \frac{1}{(1 - e^{-B}z^{-1})^2}$$

So it has **two poles with bandwidth B** at $\omega = 0$. We have learned that when a pole has positive bandwidth, then y[n] **doesn't** go to infinity.

Summary so far: Poles and Zeros

- When X(z) has a pole at some frequency, and H(z) has a zero at the same frequency with the same bandwidth, then the pole and zero cancel.
- When X(z) and H(z) both have poles at the same frequency but with positive bandwidth, then y[n] doesn't go to infinity; it rises, then falls again.

Summary so far: Useful Z Transform Pairs

y[n]	Y(z)	Zeros	Poles
$\delta[n] - e^{-B}\delta[n-1]$	$(1 - e^{-B}z^{-1})$	$\omega =$ 0, BW=B	None
$\delta[n]$	1	None	None
e ^{-Bn} u[n]	$rac{1}{(1-e^{-B}z^{-1})}$	None	$\omega = 0, BW=B$
(n+1)u[n]	$rac{1}{(1-e^{-B}z^{-1})^2}$	None	Two at $\omega = 0$, BW=B

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Poles and Zeros at DC

2 Poles and Zeros with Nonzero Bandwidth

Oles and Zeros with Nonzero Center Frequency

4 Notch Filter

Z Transform of a Sinusoid

What's the Z transform of

$$x[n] = \cos(\theta n)u[n] = \left\{egin{array}{cc} \cos(heta n) & n \geq 0 \ 0 & ext{otherwise} \end{array}
ight.$$

Let's find out:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} = \frac{1}{2} \sum_{n = -\infty}^{\infty} e^{-j\theta n} z^{-n} + \frac{1}{2} \sum_{n = -\infty}^{\infty} e^{j\theta n} z^{-n}$$

This corresponds to

$$U(\omega) = rac{1}{2} rac{1}{1 - e^{-j(\omega + heta)}} + rac{1}{2} rac{1}{1 - e^{-j(\omega - heta)}}$$

Notice that $|U(\omega)| = \frac{1}{0} = \infty$ when $\omega = \pm \theta$. We say that U(z) has poles at $\omega = \pm \theta$

Filter with a Zero at DC

Consider the following filter:

$$\begin{split} y[n] &= x[n] - e^{j\theta} x[n-1] \\ Y(z) &= X(z) - e^{j\theta} z^{-1} X(z) = (1 - e^{j\theta} z^{-1}) X(z) \\ H(z) &= 1 - e^{j\theta} z^{-1}, \quad H(\omega) = 1 - e^{-j(\omega - \theta))} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We say that H(z) has a **zero** at $\omega = \theta$.

Pole-Zero Cancellation

What happens when a pole meets a zero? Let's find out. Let's put $x[n] = e^{j\theta n}u[n]$ into

$$y[n] = x[n] - e^{j\theta}x[n-1]$$
$$X(z) = \frac{1}{1 - e^{j\theta}z^{-1}}, \quad H(z) = (1 - e^{j\theta}z^{-1})$$
$$Y(z) = H(z)X(z) = \frac{1 - e^{j\theta}z^{-1}}{1 - e^{j\theta}z^{-1}} = 1$$

So y[n] is the inverse Z-transform of Y(z) = 1, which is $y[n] = \delta[n]$But we could have figured that out directly from the system equation!

A Filter with a Pole

Let's find the transfer function for this system:

$$y[n] = x[n] + e^{j\theta}y[n-1]$$

$$Y(z) = X(z) + e^{j\theta}z^{-1}Y(z)$$

$$Y(z)(1 - e^{j\theta}z^{-1}) = X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - e^{j\theta}z^{-1}}$$

So this is a transfer function with a pole of zero bandwidth B at $\omega = \theta$!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Pole-Pole Coincidence

What happens when a pole in the input (X(z)) meets a pole in the transfer function (H(z))? Let's use $x[n] = e^{j\theta n}u[n]$ as the input to this system:

$$y[n] = x[n] + e^{j\theta}y[n-1]$$

By plugging x[n] into that equation directly, we discover that

$$y[n] = (n+1)e^{j\theta n}u[n]$$

This is a **very bad thing**, because $|e^{j\theta n}| = 1$. Therefore the magnitude of y[n] is |y[n]| = (n+1), which goes to infinity. The Z transform is:

$$Y(z) = rac{1}{1 - e^{j heta} z^{-1}} X(z) = rac{1}{(1 - e^{j heta} z^{-1})^2}$$

So it has **two poles with zero bandwidth** at $\omega = \theta$. We have learned that when Y(z) has two poles of zero bandwidth, at **any center frequency** $\omega = \theta$, then y[n] goes to infinity.

Summary so far: Poles and Zeros

- When X(z) has a pole at some frequency, and H(z) has a zero at the same frequency, then the pole and zero cancel.
- When X(z) and H(z) both have poles at the same frequency with zero bandwidth, then y[n] goes to infinity.

Summary so far: Useful Z Transform Pairs

y[n]	Y(z)	Zeros	Poles
$\delta[n] - e^{j\theta}\delta[n-1]$	$(1-e^{j heta}z^{-1})$	$\omega = \theta$, BW=0	None
$\delta[n]$	1	None	None
e ^{jθn} u[n]	$rac{1}{(1-e^{j heta}z^{-1})}$	None	$\omega = \theta$, BW=0
$(n+1)\overline{e^{j\theta n}}u[n]$	$rac{1}{(1-e^{j heta}z^{-1})^2}$	None	Two at $\omega = \theta$, BW=0

(ロ)、(型)、(E)、(E)、 E) の(の)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Outline

Poles and Zeros at DC

Poles and Zeros with Nonzero Bandwidth

3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Narrowband Noise

Suppose our measurement, x[n], includes a desired signal, s[n], that has been corrupted by narrowband noise v[n]:

$$x[n] = s[n] + v[n]$$

Where v[n] is a cosine at a **known frequency** $\omega = \theta$, but with unknown phase ϕ , and unknown amplitude A:

$$v[n] = A\cos\left(\theta n + \phi\right)$$

$$V(z)=rac{A}{2}\left(rac{e^{j\phi}}{1-e^{j heta}z^{-1}}+rac{e^{-j\phi}}{1-e^{-j heta}z^{-1}}
ight)$$

We call v[n] a "narrowband" noise, because $V(z) = \infty$ at $\omega = \pm \theta$, and V(z) is small or zero at all other frequencies.

Noise Removal

We want to design an LCCDE that will get rid of the noise. In other words, we want to find coefficients a_m and b_m so that

$$y[n] = \sum_{m=0}^{M-1} b_m x[n-m] + \sum_{m=0}^{N-1} a_m y[n-m]$$

and

$$y[n] \approx s[n]$$

(日) (日) (日) (日) (日) (日) (日) (日)

Noise Removal

Let's put it in the Z transform domain:

$$Y(z) = H(z)X(z) = H(z)S(z) + H(z)V(z)$$

where

$$H(z) = \frac{\sum_{m=0}^{M-1} b_m z^{-m}}{1 - \sum_{m=0}^{N-1} a_m z^{-m}}$$

We want to design H(z) so that:

h[n] * v[n] = 0 for all n > 0. For example, we can design it so that h[n] * v[n] = δ[n] by using pole-zero cancellation.

•
$$H(z)S(z) \approx S(z)$$
.

Part One: the Zeros

First, let's find V(z).

$$V(z) = \sum_{n=0}^{\infty} A\cos(\theta n + \phi) z^{-n}$$
$$= \frac{Ae^{j\phi}}{2} \sum_{n=0}^{\infty} e^{j\theta n} z^{-n} + \frac{Ae^{-j\phi}}{2} \sum_{n=0}^{\infty} e^{-j\theta n} z^{-n}$$
$$= \frac{Ae^{j\phi}/2}{1 - e^{j\theta} z^{-1}} + \frac{Ae^{-j\phi}/2}{1 - e^{-j\theta} z^{-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Part One: the Zeros

$$V(z) = \frac{Ae^{j\phi}/2}{1 - e^{j\phi}z^{-1}} + \frac{Ae^{-j\phi}/2}{1 - e^{-j\phi}z^{-1}}$$

We can cancel these two poles by using zeros:

$$H(z) = \frac{(1 - e^{j\theta}z^{-1})(1 - e^{-j\theta}z^{-1})}{\text{something}}$$

So that, right at the two frequencies $\omega = \pm \theta$, H(z) = 0, and therefore, right at those two noise frequencies, Y(z) = 0.

Part Two: The Poles

Recall that we want H(z) = 0 right at $\omega = \theta$, but at all other frequencies, we want $H(z)S(z) \approx S(z)$. In other words, at all frequencies **other** than $\omega = \theta$, we want $H(z) \approx 1$. This can be done by giving H(z) a pair of poles at exactly the same frequency, but with small positive bandwidth:

$${m H}(z) = rac{(1-e^{j heta}z^{-1})(1-e^{-j heta}z^{-1})}{(1-e^{-B+j heta}z^{-1})(1-e^{-B-j heta}z^{-1})}$$

This has the following properties:

- Right at $\omega = \pm \theta$, the numerator ensures that H(z) = 0 exactly.
- At frequencies such that $|\omega \theta| \gg B$, the numerator and denominator cancel each other out, so that $H(z) \approx 1$.

The LCCDE

Let's turn it into an LCCDE.

$$H(z) = \frac{(1 - e^{j\theta}z^{-1})(1 - e^{-j\theta}z^{-1})}{(1 - e^{-B + j\theta}z^{-1})(1 - e^{-B - j\theta}z^{-1})}$$

$$H(z) = \frac{1 - 2\cos\theta z^{-1} + z^{-2}}{1 - 2e^{-B}\cos\theta z^{-1} + e^{-2B}z^{-2}}$$

So the LCCDE is:

$$y[n] = x[n] - 2\cos\theta x[n-1] + x[n-2] + 2e^{-B}\cos\theta y[n-1] - e^{-2B}y[n-2]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ