Lecture 16: Zeros and Poles

ECE 401: Signal and Image Analysis

University of Illinois

4/6/2017

(1) Poles and Zeros at DC
(2) Poles and Zeros with Nonzero Bandwidth
(3) Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Outline

(1) Poles and Zeros at DC

(2) Poles and Zeros with Nonzero Bandwidth

3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Z Transform of a Unit Step

What's the Z transform of

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Let's find out:

$$
U(z)=\sum_{n=-\infty}^{\infty} u[n] z^{-n}=\sum_{n=-\infty}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}
$$

This corresponds to

$$
U(\omega)=\frac{1}{1-e^{-j \omega}}
$$

Notice that when $\omega=0,|U(\omega)|=1 /(1-1)=1 / 0=\infty$. We say $U(z)$ has a pole at $\omega=0$.

Filter with a Zero at DC

Consider the following filter:

$$
\begin{gathered}
y[n]=x[n]-x[n-1] \\
Y(z)=X(z)-z^{-1} X(z)=\left(1-z^{-1}\right) X(z) \\
H(z)=1-z^{-1}, \quad H(\omega)=1-e^{-j \omega}
\end{gathered}
$$

Notice that when $\omega=0,|H(\omega)|=0$. We say that $H(z)$ has a zero at $\omega=0$.

Pole-Zero Cancellation

What happens when a pole meets a zero? Let's find out. Let's put $x[n]=u[n]$ into

$$
\begin{gathered}
y[n]=u[n]-u[n-1] \\
U(z)=\frac{1}{1-z^{-1}}, \quad H(z)=\left(1-z^{-1}\right) \\
Y(z)=H(z) U(z)=\frac{1-z^{-1}}{1-z^{-1}}=1
\end{gathered}
$$

So $y[n]$ is the inverse Z-transform of $Y(z)=1$, which is
$y[n]=\delta[n]$. ...But we could have figured that out directly from the system equation!

A Filter with a Pole

Let's find the transfer function for this system:

$$
\begin{gathered}
y[n]=x[n]+y[n-1] \\
Y(z)=X(z)+z^{-1} Y(z) \\
Y(z)\left(1-z^{-1}\right)=X(z) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-z^{-1}}
\end{gathered}
$$

So this is a transfer function with a pole at $\omega=0$!

Pole-Pole Coincidence

What happens when a pole in the input $(X(z))$ meets a pole in the transfer function $(H(z))$? Let's use $u[n]$ as the input to this system:

$$
y[n]=u[n]+y[n-1]
$$

By plugging $u[n]$ into that equation directly, we discover that

$$
y[n]=(n+1) u[n]
$$

...which is almost certainly a very bad thing, because it grows without bound (we sometimes say it is "unbounded" or it "goes to infinity"). The Z transform is:

$$
Y(z)=\frac{1}{1-z^{-1}} U(z)=\frac{1}{\left(1-z^{-1}\right)^{2}}
$$

So it has two poles at $\omega=0$. We have learned that when $Y(z)$ has two poles at the same frequency, then $y[n]$ goes to infinity.

Summary so far: Poles and Zeros

- When $X(z)$ has a pole at some frequency, and $H(z)$ has a zero at the same frequency (or vice versa!!), then the pole and zero cancel.
- When $X(z)$ and $H(z)$ both have poles at the same frequency, then $y[n]$ goes to infinity.

Summary so far: Useful Z Transform Pairs

$y[n]$	$Y(z)$	Zeros	Poles
$\delta[n]-\delta[n-1]$	$\left(1-z^{-1}\right)$	One at $\omega=0$	None
$\delta[n]$	1	None	None
$u[n]$	$\frac{1}{\left(1-z^{-1}\right)}$	None	One at $\omega=0$
$(n+1) u[n]$	$\frac{1}{\left(1-z^{-1}\right)^{2}}$	None	Two at $\omega=0$

Outline

(1) Poles and Zeros at DC

(2) Poles and Zeros with Nonzero Bandwidth

3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Z Transform of an Exponential

What's the Z transform of

$$
x[n]=e^{-B n} u[n]= \begin{cases}e^{-B n} & n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Let's find out:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty} e^{-B n} z^{-n} \frac{1}{1-e^{-B} z^{-1}}
$$

This corresponds to
$U(\omega)=\frac{1}{1-e^{-(B+j \omega)}} ; \quad U(0)=\frac{1}{1-e^{-B}}, \quad U(B)=\frac{1}{1-e^{-B(1+j)}} \approx \frac{1}{\sqrt{2}}$
We say that this signal has a pole of bandwidth \mathbf{B} at $\omega=0$.

Filter with a Zero at DC

Consider the following filter:

$$
\begin{gathered}
y[n]=x[n]-e^{-B} x[n-1] \\
Y(z)=X(z)-e^{-B} z^{-1} X(z)=\left(1-e^{-B} z^{-1}\right) X(z) \\
H(z)=1-e^{-B} z^{-1}, \quad H(\omega)=1-e^{-(B+j \omega)}
\end{gathered}
$$

We say that $H(z)$ has a zero of bandwidth \mathbf{B} at $\omega=0$.

Pole-Zero Cancellation

What happens when a pole meets a zero? Let's find out. Let's put $x[n]=e^{-B n} u[n]$ into

$$
\begin{gathered}
y[n]=x[n]-e^{-B} x[n-1] \\
U(z)=\frac{1}{1-e^{-B} z^{-1}}, \quad H(z)=\left(1-e^{-B} z^{-1}\right) \\
Y(z)=H(z) U(z)=\frac{1-e^{-B} z^{-1}}{1-e^{-B} z^{-1}}=1
\end{gathered}
$$

So $y[n]$ is the inverse Z-transform of $Y(z)=1$, which is $y[n]=\delta[n]$. ...But we could have figured that out directly from the system equation!

A Filter with a Pole

Let's find the transfer function for this system:

$$
\begin{gathered}
y[n]=x[n]+e^{-B} y[n-1] \\
Y(z)=X(z)+e^{-B} z^{-1} Y(z) \\
Y(z)\left(1-e^{-B} z^{-1}\right)=X(z) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-e^{-B} z^{-1}}
\end{gathered}
$$

So this is a transfer function with a pole of bandwidth B at $\omega=0$!

Pole-Pole Coincidence

What happens when a pole in the input $(X(z))$ meets a pole in the transfer function $(H(z))$? Let's use $e^{-B n} u[n]$ as the input to this system:

$$
y[n]=u[n]+e^{-B} y[n-1]
$$

By plugging $u[n]$ into that equation directly, we discover that

$$
y[n]=(n+1) e^{-B n} u[n]
$$

This is OK, as long as $B>0$. As long as $B>0$, the output $y[n]$ will rise and then fall again. The Z transform is:

$$
Y(z)=\frac{1}{1-e^{-B} z^{-1}} U(z)=\frac{1}{\left(1-e^{-B} z^{-1}\right)^{2}}
$$

So it has two poles with bandwidth \mathbf{B} at $\omega=0$. We have learned that when a pole has positive bandwidth, then $y[n]$ doesn't go to infinity.

Summary so far: Poles and Zeros

- When $X(z)$ has a pole at some frequency, and $H(z)$ has a zero at the same frequency with the same bandwidth, then the pole and zero cancel.
- When $X(z)$ and $H(z)$ both have poles at the same frequency but with positive bandwidth, then $y[n]$ doesn't go to infinity; it rises, then falls again.

Summary so far: Useful Z Transform Pairs

$y[n]$	$Y(z)$	Zeros	Poles
$\delta[n]-e^{-B} \delta[n-1]$	$\left(1-e^{-B} z^{-1}\right)$	$\omega=0, \mathrm{BW}=B$	None
$\delta[n]$	1	None	None
$e^{-B n} u[n]$	$\frac{1}{\left(1-e^{-B} z^{-1}\right)}$	None	$\omega=0, \mathrm{BW}=B$
$(n+1) u[n]$	$\frac{1}{\left(1-e^{-B} z^{-1}\right)^{2}}$	None	Two at $\omega=0, \mathrm{BW}=B$

Outline

(1) Poles and Zeros at DC
 (2) Poles and Zeros with Nonzero Bandwidth

3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Z Transform of a Sinusoid

What's the Z transform of

$$
x[n]=\cos (\theta n) u[n]= \begin{cases}\cos (\theta n) & n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Let's find out:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\frac{1}{2} \sum_{n=-\infty}^{\infty} e^{-j \theta n} z^{-n}+\frac{1}{2} \sum_{n=-\infty}^{\infty} e^{j \theta n} z^{-n}
$$

This corresponds to

$$
U(\omega)=\frac{1}{2} \frac{1}{1-e^{-j(\omega+\theta)}}+\frac{1}{2} \frac{1}{1-e^{-j(\omega-\theta)}}
$$

Notice that $|U(\omega)|=\frac{1}{0}=\infty$ when $\omega= \pm \theta$. We say that $U(z)$ has poles at $\omega= \pm \theta$

Filter with a Zero at DC

Consider the following filter:

$$
\begin{gathered}
y[n]=x[n]-e^{j \theta} x[n-1] \\
Y(z)=X(z)-e^{j \theta} z^{-1} X(z)=\left(1-e^{j \theta} z^{-1}\right) X(z) \\
H(z)=1-e^{j \theta} z^{-1}, \quad H(\omega)=1-e^{-j(\omega-\theta))}
\end{gathered}
$$

We say that $H(z)$ has a zero at $\omega=\theta$.

Pole-Zero Cancellation

What happens when a pole meets a zero? Let's find out. Let's put $x[n]=e^{j \theta n} u[n]$ into

$$
\begin{gathered}
y[n]=x[n]-e^{j \theta} x[n-1] \\
X(z)=\frac{1}{1-e^{j \theta} z^{-1}}, \quad H(z)=\left(1-e^{j \theta} z^{-1}\right) \\
Y(z)=H(z) X(z)=\frac{1-e^{j \theta} z^{-1}}{1-e^{j \theta} z^{-1}}=1
\end{gathered}
$$

So $y[n]$ is the inverse Z-transform of $Y(z)=1$, which is $y[n]=\delta[n]$. ...But we could have figured that out directly from the system equation!

A Filter with a Pole

Let's find the transfer function for this system:

$$
\begin{gathered}
y[n]=x[n]+e^{j \theta} y[n-1] \\
Y(z)=X(z)+e^{j \theta} z^{-1} Y(z) \\
Y(z)\left(1-e^{j \theta} z^{-1}\right)=X(z) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-e^{j \theta} z^{-1}}
\end{gathered}
$$

So this is a transfer function with a pole of zero bandwidth B at $\omega=\theta$!

Pole-Pole Coincidence

What happens when a pole in the input $(X(z))$ meets a pole in the transfer function $(H(z))$? Let's use $x[n]=e^{j \theta n} u[n]$ as the input to this system:

$$
y[n]=x[n]+e^{j \theta} y[n-1]
$$

By plugging $x[n]$ into that equation directly, we discover that

$$
y[n]=(n+1) e^{j \theta n} u[n]
$$

This is a very bad thing, because $\left|e^{j \theta n}\right|=1$. Therefore the magnitude of $y[n]$ is $|y[n]|=(n+1)$, which goes to infinity. The Z transform is:

$$
Y(z)=\frac{1}{1-e^{j \theta} z^{-1}} X(z)=\frac{1}{\left(1-e^{j \theta} z^{-1}\right)^{2}}
$$

So it has two poles with zero bandwidth at $\omega=\theta$. We have learned that when $Y(z)$ has two poles of zero bandwidth, at any center frequency $\omega=\theta$, then $y[n]$ goes to infinity.

Summary so far: Poles and Zeros

- When $X(z)$ has a pole at some frequency, and $H(z)$ has a zero at the same frequency, then the pole and zero cancel.
- When $X(z)$ and $H(z)$ both have poles at the same frequency with zero bandwidth, then $y[n]$ goes to infinity.

Summary so far: Useful Z Transform Pairs

$y[n]$	$Y(z)$	Zeros	Poles
$\delta[n]-e^{j \theta} \delta[n-1]$	$\left(1-e^{j \theta} z^{-1}\right)$	$\omega=\theta, \mathrm{BW}=0$	None
$\delta[n]$	1	None	None
$e^{j \theta n} u[n]$	$\frac{1}{\left(1-e^{j \theta} z^{-1}\right)}$	None	$\omega=\theta, \mathrm{BW}=0$
$(n+1) e^{j \theta n} u[n]$	$\frac{\left.1-e^{j \theta} z^{-1}\right)^{2}}{(1-2}$	None	Two at $\omega=\theta, \mathrm{BW}=0$

Outline

(1) Poles and Zeros at DC
 (2) Poles and Zeros with Nonzero Bandwidth
 3 Poles and Zeros with Nonzero Center Frequency

4 Notch Filter

Narrowband Noise

Suppose our measurement, $x[n]$, includes a desired signal, $s[n]$, that has been corrupted by narrowband noise $v[n]$:

$$
x[n]=s[n]+v[n]
$$

Where $v[n]$ is a cosine at a known frequency $\omega=\theta$, but with unknown phase ϕ, and unknown amplitude A :

$$
\begin{gathered}
v[n]=A \cos (\theta n+\phi) \\
V(z)=\frac{A}{2}\left(\frac{e^{j \phi}}{1-e^{j \theta} z^{-1}}+\frac{e^{-j \phi}}{1-e^{-j \theta} z^{-1}}\right)
\end{gathered}
$$

We call $v[n]$ a "narrowband" noise, because $V(z)=\infty$ at $\omega= \pm \theta$, and $V(z)$ is small or zero at all other frequencies.

Noise Removal

We want to design an LCCDE that will get rid of the noise. In other words, we want to find coefficients a_{m} and b_{m} so that

$$
y[n]=\sum_{m=0}^{M-1} b_{m} x[n-m]+\sum_{m=0}^{N-1} a_{m} y[n-m]
$$

and

$$
y[n] \approx s[n]
$$

Noise Removal

Let's put it in the Z transform domain:

$$
Y(z)=H(z) X(z)=H(z) S(z)+H(z) V(z)
$$

where

$$
H(z)=\frac{\sum_{m=0}^{M-1} b_{m} z^{-m}}{1-\sum_{m=0}^{N-1} a_{m} z^{-m}}
$$

We want to design $H(z)$ so that:

- $h[n] * v[n]=0$ for all $n>0$. For example, we can design it so that $h[n] * v[n]=\delta[n]$ by using pole-zero cancellation.
- $H(z) S(z) \approx S(z)$.

Part One: the Zeros

First, let's find $V(z)$.

$$
\begin{gathered}
V(z)=\sum_{n=0}^{\infty} A \cos (\theta n+\phi) z^{-n} \\
=\frac{A e^{j \phi}}{2} \sum_{n=0}^{\infty} e^{j \theta n} z^{-n}+\frac{A e^{-j \phi}}{2} \sum_{n=0}^{\infty} e^{-j \theta n} z^{-n} \\
=\frac{A e^{j \phi} / 2}{1-e^{j \theta} z^{-1}}+\frac{A e^{-j \phi} / 2}{1-e^{-j \theta} z^{-1}}
\end{gathered}
$$

Part One: the Zeros

$$
V(z)=\frac{A e^{j \phi} / 2}{1-e^{j \theta} z^{-1}}+\frac{A e^{-j \phi} / 2}{1-e^{-j \theta} z^{-1}}
$$

We can cancel these two poles by using zeros:

$$
H(z)=\frac{\left(1-e^{j \theta} z^{-1}\right)\left(1-e^{-j \theta} z^{-1}\right)}{\text { something }}
$$

So that, right at the two frequencies $\omega= \pm \theta, H(z)=0$, and therefore, right at those two noise frequencies, $Y(z)=0$.

Part Two: The Poles

Recall that we want $H(z)=0$ right at $\omega=\theta$, but at all other frequencies, we want $H(z) S(z) \approx S(z)$. In other words, at all frequencies other than $\omega=\theta$, we want $H(z) \approx 1$. This can be done by giving $H(z)$ a pair of poles at exactly the same frequency, but with small positive bandwidth:

$$
H(z)=\frac{\left(1-e^{j \theta} z^{-1}\right)\left(1-e^{-j \theta} z^{-1}\right)}{\left(1-e^{-B+j \theta} z^{-1}\right)\left(1-e^{-B-j \theta} z^{-1}\right)}
$$

This has the following properties:

- Right at $\omega= \pm \theta$, the numerator ensures that $H(z)=0$ exactly.
- At frequencies such that $|\omega-\theta| \gg B$, the numerator and denominator cancel each other out, so that $H(z) \approx 1$.

The LCCDE

Let's turn it into an LCCDE.

$$
\begin{aligned}
H(z) & =\frac{\left(1-e^{j \theta} z^{-1}\right)\left(1-e^{-j \theta} z^{-1}\right)}{\left(1-e^{-B+j \theta} z^{-1}\right)\left(1-e^{-B-j \theta} z^{-1}\right)} \\
H(z) & =\frac{1-2 \cos \theta z^{-1}+z^{-2}}{1-2 e^{-B} \cos \theta z^{-1}+e^{-2 B} z^{-2}}
\end{aligned}
$$

So the LCCDE is:
$y[n]=x[n]-2 \cos \theta x[n-1]+x[n-2]+2 e^{-B} \cos \theta y[n-1]-e^{-2 B} y[n-2]$

