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Z Transform of a Unit Step

What’s the Z transform of

u[n] =

{
1 n ≥ 0
0 otherwise

Let’s find out:

U(z) =
∞∑

n=−∞
u[n]z−n =

∞∑
n=−∞

z−n =
1

1− z−1

This corresponds to

U(ω) =
1

1− e−jω

Notice that when ω = 0, |U(ω)| = 1/(1− 1) = 1/0 =∞. We say
U(z) has a pole at ω = 0.
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Filter with a Zero at DC

Consider the following filter:

y [n] = x [n]− x [n − 1]

Y (z) = X (z)− z−1X (z) = (1− z−1)X (z)

H(z) = 1− z−1, H(ω) = 1− e−jω

Notice that when ω = 0, |H(ω)| = 0. We say that H(z) has a zero
at ω = 0.
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Pole-Zero Cancellation

What happens when a pole meets a zero? Let’s find out. Let’s put
x [n] = u[n] into

y [n] = u[n]− u[n − 1]

U(z) =
1

1− z−1
, H(z) = (1− z−1)

Y (z) = H(z)U(z) =
1− z−1

1− z−1
= 1

So y [n] is the inverse Z-transform of Y (z) = 1, which is
y [n] = δ[n]. ...But we could have figured that out directly from the
system equation!
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A Filter with a Pole

Let’s find the transfer function for this system:

y [n] = x [n] + y [n − 1]

Y (z) = X (z) + z−1Y (z)

Y (z)(1− z−1) = X (z)

H(z) =
Y (z)

X (z)
=

1

1− z−1

So this is a transfer function with a pole at ω = 0!
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Pole-Pole Coincidence

What happens when a pole in the input (X (z)) meets a pole in the
transfer function (H(z))? Let’s use u[n] as the input to this
system:

y [n] = u[n] + y [n − 1]

By plugging u[n] into that equation directly, we discover that

y [n] = (n + 1)u[n]

...which is almost certainly a very bad thing, because it grows
without bound (we sometimes say it is “unbounded” or it “goes to
infinity”). The Z transform is:

Y (z) =
1

1− z−1
U(z) =

1

(1− z−1)2

So it has two poles at ω = 0. We have learned that when Y (z)
has two poles at the same frequency, then y [n] goes to infinity.
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Summary so far: Poles and Zeros

When X (z) has a pole at some frequency, and H(z) has a
zero at the same frequency (or vice versa!!), then the pole and
zero cancel.

When X (z) and H(z) both have poles at the same frequency,
then y [n] goes to infinity.
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Summary so far: Useful Z Transform Pairs

y [n] Y (z) Zeros Poles

δ[n]− δ[n − 1] (1− z−1) One at ω = 0 None

δ[n] 1 None None

u[n] 1
(1−z−1)

None One at ω = 0

(n + 1)u[n] 1
(1−z−1)2

None Two at ω = 0
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Z Transform of an Exponential

What’s the Z transform of

x [n] = e−Bnu[n] =

{
e−Bn n ≥ 0
0 otherwise

Let’s find out:

X (z) =
∞∑

n=−∞
x [n]z−n =

∞∑
n=−∞

e−Bnz−n
1

1− e−Bz−1

This corresponds to

U(ω) =
1

1− e−(B+jω)
; U(0) =

1

1− e−B
, U(B) =

1

1− e−B(1+j)
≈ 1√

2
B(0)

We say that this signal has a pole of bandwidth B at ω = 0.
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Filter with a Zero at DC

Consider the following filter:

y [n] = x [n]− e−Bx [n − 1]

Y (z) = X (z)− e−Bz−1X (z) = (1− e−Bz−1)X (z)

H(z) = 1− e−Bz−1, H(ω) = 1− e−(B+jω)

We say that H(z) has a zero of bandwidth B at ω = 0.
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Pole-Zero Cancellation

What happens when a pole meets a zero? Let’s find out. Let’s put
x [n] = e−Bnu[n] into

y [n] = x [n]− e−Bx [n − 1]

U(z) =
1

1− e−Bz−1
, H(z) = (1− e−Bz−1)

Y (z) = H(z)U(z) =
1− e−Bz−1

1− e−Bz−1
= 1

So y [n] is the inverse Z-transform of Y (z) = 1, which is
y [n] = δ[n]. ...But we could have figured that out directly from the
system equation!
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A Filter with a Pole

Let’s find the transfer function for this system:

y [n] = x [n] + e−By [n − 1]

Y (z) = X (z) + e−Bz−1Y (z)

Y (z)(1− e−Bz−1) = X (z)

H(z) =
Y (z)

X (z)
=

1

1− e−Bz−1

So this is a transfer function with a pole of bandwidth B at
ω = 0!
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Pole-Pole Coincidence

What happens when a pole in the input (X (z)) meets a pole in the
transfer function (H(z))? Let’s use e−Bnu[n] as the input to this
system:

y [n] = u[n] + e−By [n − 1]

By plugging u[n] into that equation directly, we discover that

y [n] = (n + 1)e−Bnu[n]

This is OK, as long as B > 0. As long as B > 0, the output y [n]
will rise and then fall again. The Z transform is:

Y (z) =
1

1− e−Bz−1
U(z) =

1

(1− e−Bz−1)2

So it has two poles with bandwidth B at ω = 0. We have
learned that when a pole has positive bandwidth, then y [n]
doesn’t go to infinity.
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Summary so far: Poles and Zeros

When X (z) has a pole at some frequency, and H(z) has a
zero at the same frequency with the same bandwidth, then
the pole and zero cancel.

When X (z) and H(z) both have poles at the same frequency
but with positive bandwidth, then y [n] doesn’t go to infinity;
it rises, then falls again.
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Summary so far: Useful Z Transform Pairs

y [n] Y (z) Zeros Poles

δ[n]− e−Bδ[n − 1] (1− e−Bz−1) ω = 0, BW=B None

δ[n] 1 None None

e−Bnu[n] 1
(1−e−Bz−1)

None ω = 0, BW=B

(n + 1)u[n] 1
(1−e−Bz−1)2

None Two at ω = 0, BW=B
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Z Transform of a Sinusoid

What’s the Z transform of

x [n] = cos(θn)u[n] =

{
cos(θn) n ≥ 0
0 otherwise

Let’s find out:

X (z) =
∞∑

n=−∞
x [n]z−n =

1

2

∞∑
n=−∞

e−jθnz−n +
1

2

∞∑
n=−∞

e jθnz−n

This corresponds to

U(ω) =
1

2

1

1− e−j(ω+θ)
+

1

2

1

1− e−j(ω−θ)

Notice that |U(ω)| = 1
0 =∞ when ω = ±θ. We say that U(z) has

poles at ω = ±θ
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Filter with a Zero at DC

Consider the following filter:

y [n] = x [n]− e jθx [n − 1]

Y (z) = X (z)− e jθz−1X (z) = (1− e jθz−1)X (z)

H(z) = 1− e jθz−1, H(ω) = 1− e−j(ω−θ))

We say that H(z) has a zero at ω = θ.
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Pole-Zero Cancellation

What happens when a pole meets a zero? Let’s find out. Let’s put
x [n] = e jθnu[n] into

y [n] = x [n]− e jθx [n − 1]

X (z) =
1

1− e jθz−1
, H(z) = (1− e jθz−1)

Y (z) = H(z)X (z) =
1− e jθz−1

1− e jθz−1
= 1

So y [n] is the inverse Z-transform of Y (z) = 1, which is
y [n] = δ[n]. ...But we could have figured that out directly from the
system equation!
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A Filter with a Pole

Let’s find the transfer function for this system:

y [n] = x [n] + e jθy [n − 1]

Y (z) = X (z) + e jθz−1Y (z)

Y (z)(1− e jθz−1) = X (z)

H(z) =
Y (z)

X (z)
=

1

1− e jθz−1

So this is a transfer function with a pole of zero bandwidth B
at ω = θ!
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Pole-Pole Coincidence

What happens when a pole in the input (X (z)) meets a pole in the
transfer function (H(z))? Let’s use x [n] = e jθnu[n] as the input to
this system:

y [n] = x [n] + e jθy [n − 1]

By plugging x [n] into that equation directly, we discover that

y [n] = (n + 1)e jθnu[n]

This is a very bad thing, because |e jθn| = 1. Therefore the
magnitude of y [n] is |y [n]| = (n + 1), which goes to infinity. The Z
transform is:

Y (z) =
1

1− e jθz−1
X (z) =

1

(1− e jθz−1)2

So it has two poles with zero bandwidth at ω = θ. We have
learned that when Y (z) has two poles of zero bandwidth, at any
center frequency ω = θ, then y [n] goes to infinity.
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Summary so far: Poles and Zeros

When X (z) has a pole at some frequency, and H(z) has a
zero at the same frequency, then the pole and zero cancel.

When X (z) and H(z) both have poles at the same frequency
with zero bandwidth, then y [n] goes to infinity.
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Summary so far: Useful Z Transform Pairs

y [n] Y (z) Zeros Poles

δ[n]− e jθδ[n − 1] (1− e jθz−1) ω = θ, BW=0 None

δ[n] 1 None None

e jθnu[n] 1
(1−e jθz−1)

None ω = θ, BW=0

(n + 1)e jθnu[n] 1
(1−e jθz−1)2

None Two at ω = θ, BW=0
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Narrowband Noise

Suppose our measurement, x [n], includes a desired signal, s[n],
that has been corrupted by narrowband noise v [n]:

x [n] = s[n] + v [n]

Where v [n] is a cosine at a known frequency ω = θ, but with
unknown phase φ, and unknown amplitude A:

v [n] = A cos (θn + φ)

V (z) =
A

2

(
e jφ

1− e jθz−1
+

e−jφ

1− e−jθz−1

)
We call v [n] a “narrowband” noise, because V (z) =∞ at
ω = ±θ, and V (z) is small or zero at all other frequencies.



Poles and Zeros at DC Poles and Zeros with Nonzero Bandwidth Poles and Zeros with Nonzero Center Frequency Notch Filter

Noise Removal

We want to design an LCCDE that will get rid of the noise. In
other words, we want to find coefficients am and bm so that

y [n] =
M−1∑
m=0

bmx [n −m] +
N−1∑
m=0

amy [n −m]

and
y [n] ≈ s[n]
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Noise Removal

Let’s put it in the Z transform domain:

Y (z) = H(z)X (z) = H(z)S(z) + H(z)V (z)

where

H(z) =

∑M−1
m=0 bmz

−m

1−
∑N−1

m=0 amz
−m

We want to design H(z) so that:

h[n] ∗ v [n] = 0 for all n > 0. For example, we can design it so
that h[n] ∗ v [n] = δ[n] by using pole-zero cancellation.

H(z)S(z) ≈ S(z).
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Part One: the Zeros

First, let’s find V (z).

V (z) =
∞∑
n=0

A cos (θn + φ) z−n

=
Ae jφ

2

∞∑
n=0

e jθnz−n +
Ae−jφ

2

∞∑
n=0

e−jθnz−n

=
Ae jφ/2

1− e jθz−1
+

Ae−jφ/2

1− e−jθz−1
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Part One: the Zeros

V (z) =
Ae jφ/2

1− e jθz−1
+

Ae−jφ/2

1− e−jθz−1

We can cancel these two poles by using zeros:

H(z) =
(1− e jθz−1)(1− e−jθz−1)

something

So that, right at the two frequencies ω = ±θ, H(z) = 0, and
therefore, right at those two noise frequencies, Y (z) = 0.
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Part Two: The Poles

Recall that we want H(z) = 0 right at ω = θ, but at all other
frequencies, we want H(z)S(z) ≈ S(z). In other words, at all
frequencies other than ω = θ, we want H(z) ≈ 1. This can be
done by giving H(z) a pair of poles at exactly the same frequency,
but with small positive bandwidth:

H(z) =
(1− e jθz−1)(1− e−jθz−1)

(1− e−B+jθz−1)(1− e−B−jθz−1)

This has the following properties:

Right at ω = ±θ, the numerator ensures that H(z) = 0
exactly.

At frequencies such that |ω − θ| � B, the numerator and
denominator cancel each other out, so that H(z) ≈ 1.
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The LCCDE

Let’s turn it into an LCCDE.

H(z) =
(1− e jθz−1)(1− e−jθz−1)

(1− e−B+jθz−1)(1− e−B−jθz−1)

H(z) =
1− 2 cos θz−1 + z−2

1− 2e−B cos θz−1 + e−2Bz−2

So the LCCDE is:

y [n] = x [n]−2 cos θx [n−1]+x [n−2]+2e−B cos θy [n−1]−e−2By [n−2]
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