ECE 417 Fall 2018 Lecture 17: Neural Networks

Mark Hasegawa-Johnson

University of lllinois

October 23, 2018

I

1867

Intro

Outline

@ What is a Neural Net?

Intro

@000

Two-Layer Feedforward Neural Network

Z=h(x,U,V)
which is decomposed as. . .

—.

z, = g(br) Z=g(b)
by = Vo + D _1 Vekyk b=Vy
i = f(ak) y = f(a)
ak = Uko + Zle Ukj X a=Ux

X is the input vector

Intro
0e00

A Neural Net is Made Of. ..

o Linear transformations: 3= UX, b = V'Y, one per layer.

@ Scalar nonlinearities: y = f(a) means that,
element-by-element, yx = f(ax) for some nonlinear function
().

@ The nonlinearities can all be different, if you want. For today,
I'll assume that all nodes in the first layer use one function
f(-), and all nodes in the second layer use some other function
g().

@ Networks with more than two layers are called “Deep Neural
Networks” (DNN). | won't talk about them today.

Andrew Barron (1993) proved that combining two layers of linear
transforms, with one scalar nonlinearity between them, is enough

to model any multivariate nonlinear function zZ = h(x)

Intro
coeo

Neural Network = Universal Approximator

Assume. . .
@ Linear Output Nodes: g(b) = b
o Smoothly Nonlinear Hidden Nodes: f'(a) = % finite

@ Smooth Target Function: Z = h(x, U, V') approximates
¢ = h*(X) € H, where H is some class of sufficiently smooth
functions of X (functions whose Fourier transform has a first

moment less than some finite number C)
@ There are g hidden nodes, y, 1 < k<gq

@ The input vectors are distributed with some probability density
function, p(X), over which we can compute expected values.

Then (Barron, 1993) showed that. ..

1
inE [h(x,U,V)—h(X)’] <O{ =
5, g E [-] <o { |

Intro
oooe

Neural Network Problems: Outline of Remainder of this Talk

@ Knowledge-Based Design. Given U, V, f, g, what kind of
function is h(x, U, V)? Can we draw Z as a function of x?
Can we heuristically choose U and V so that Z looks kinda
like ¢7

© Nonlinearities. They come in pairs: the test-time
nonlinearity, and the training-time nonlinearity.

© Error Metric. In what way should Z = h(xX) be “similar to”
¢ = h*(X)?

@ Training: Gradient Descent with Back-Propagation.
Given an initial U, V, how do | find U, V that more closely
approximate (7

Outline

© Knowledge-Based Design

Design
®000

Synapse, First Layer: ax = uxo + 21221 UkjX;

First Layer, kth Synapse, ak(x1 ,x2)

-1 -0.8 -0.6 -0.4 -0.2 0 02

0.4 06 0.8 1

First Layer, kth Synapse, ak(x1,0)

5 | ‘ ‘
Y
<0
< /
_5 Il Il Il Il Il Il Il Il
4 08 06 04 02 0 02 04 06 08 1

Design
0®00

Axon, First Layer: yi

First Layer, kth Axon, yk(x1 ,x2)

-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

%

First Layer, kth Axon, yk(x1,0)
2 T T T

-
T
L

%,%,0
o

L
I

Design

[eJe] le]

Synapse, Second Layer: by = vy + Ei:l Vek Vi

Second Layer, Ith Synapse, b(x1 ,x2)

0.5
1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
%
Second Layer, Ith Synapse, b(x1,0)
2 T T T T
i J
Y
< 0
)
AF 4
_2 L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

%

Design

[eJele])

Axon, Second Layer: z, = sign(by)

Second Layer, Ith Axon, z(x1 ,x2)

-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

%

Second Layer, Ith Axon, z(x1,0)

zl(x1 ,0)
o N

Nonlinearities

Outline

© Nonlinearities

Nonlinearities
®00

Differentiable and Non-differentiable Nonlinearities

The nonlinearities come in pairs: (1) the test-time nonlinearity is
the one that you use in the output layer of your learned
classifier, e.g., in the app on your cell phone (2) the
training-time nonlinearity is used in the output layer during
training, and in the hidden layers during both training and test.

Application Test-Time Training-Time
Output Output & Hidden
Nonlinearity Nonlinearity
{0,1} classification step logistic or ReLU
{—1,+1} classification signum tanh
multinomial classification argmax softmax
regression linear (hidden nodes
must be
nonlinear)

Nonlinearities
oceo

Step and Logistic nonlinearities Signum and Tanh nonlinearities

Unit Step: g(b)=u(b) Signum: g(b)=sign(b)
15 15
1 1
0.5 0.5
S 9 g o
o o
05 -0.5
1 1
5 2 0 2 4 5 2 0 2 4
b b
fatine — -b . —(ab b b, .-b.
Logistic: g(b)=1/(1+e™) Tanh: g(b)=(e"-e™")/(e"+e™)
15 1.5
1 1
0.5 / 0.5
s o0 3 0
0.5 05
1 1
5 2 0 2 4 A8, 2 0 2 4
b b

Nonlinearities
ocoe

“Linear Nonlinearity” and RelLU Argmax and Softmax

Linear: g(b)=b Argmax:

3

2

1 S 1 by = maxm by

é = -

s, 0 otherwise
o

1

_2 Softmanx:

'?’4 2 8 2 4 ebl

Zp = ————
RelLU: g(b)= 0,b b,

, eLU: g(b)=max(0,b) > €tm

2
. 1
S

0

-1

'?4 2 0 2 4

b

Metric

Outline

@ Error Metric

Metric
©000000

Error Metric: MMSE for Linear Output Nodes

Minimum Mean Squared Error (MMSE)

* * : 1 L =
U, V* =argminE = argmmznle,- — Z(x)?

v

Why would we want to use this metric?

If the training samples ()?,,5) are i.i.d., then in the limit as the
number of training tokens goes to infinity,

Mﬂ%EMﬂ

Metric
0®00000

Error Metric: MMSE for Binary Target Vector

Binary target vector

Suppose

= 1 with probability Py(X)
71 0 with probability 1 — Py(x)

and suppose 0 < z; < 1, e.g., logistic output nodes.

v

Why does MMSE make sense for binary targets?

E[Glx] = 1-P(X)+0-(1— Py(x))
= Py(X)

So the MMSE neural network solution is

h(%) > E [CI%] = Pe(x)

Metric
[e1eY Yelolele}

Softmax versus Logistic Output Nodes

Encoding the Neural Net Output using a “One-Hot Vector”

@ Suppose f, is a “one hot" vector, i.e., only one element is
“hot” (Cy(iy,i = 1), all others are “cold” ((mi = 0, m # £(i)).

@ Training logistic output nodes with MMSE training will
approach the solution z; = Pr{{; = 1|x}, but there's no
guarantee that it's a correctly normalized pmf (> z, = 1)
until it has fully converged.

e Softmax output nodes guarantee that }_ z, = 1.

Softmax output nodes

ebe

X

Zy —

Metric
[eleleY Yolele}

Cross-Entropy

The softmax nonlinearity is “matched” to an error criterion called
“cross-entropy,” in the sense that its derivative can be simplified to
have a very, very simple form.

@ (i is the true reference probability that observation X; is of
class £. In most cases, this “reference probability” is either 0
or 1 (one-hot).

@ z,; is the neural network’s hypothesis about the probability
that X; is of class £. The softmax function constrains this to
be 0 < Zyi < 1 and ZZ Zyi = 1.

The average cross-entropy between these two distributions is

n
E=—23" 3 Gloga,

i=1 ¢

Metric
000000

Cross-Entropy = Log Probability

Suppose token X; is of class £*, meaning that (y+ ; = 1, and all
others are zero. Then cross-entropy is just the neural net's
estimate of the negative log probability of the correct class:

1 n
E = - z; log zp» ;
1=

In other words, E is the average of the negative log probability of
each training token:

1 n
E = —n;E,, Ei = —logz-;
1=

Cross-Entropy is matched to softmax

Now let's plug in the softmax:
ebﬁ*,i
Dok €PH

Its gradient with respect to the softmax inputs, b;, is

Ei=—logzy;, zp;=

OE; 1 82[*,i
Obmi Zpx i Obpm;
bl* N\ 2
- e _ (e Y,) m = /¢*
zpe i \ 2, ebki (Zk ebk,)2
box -
1 e g*ylebmi *
- e ttietmi m#{
= () ?

=Zmi — Cmi

Metric
00000Oe

Error Metrics Summarized

@ Use MSE to achieve Z = E [f\)?] That's almost always what
you want.

o If fis a one-hot vector, then use Cross-Entropy (with a
softmax nonlinearity on the output nodes) to guarantee that Z
is a properly normalized probability mass function, and
because it gives you the amazingly easy formula
OE; __

Obmi Zmi — Cmi-

@ If {y is binary, but not necessarily one-hot, then use MSE

(with a logistic nonlinearity) to achieve z; = Pr{(, = 1|x}.

Gradient

Outline

© Gradient Descent

Gradient
©000000

Gradient Descent = Local Optimization

Neural Net Error Surface (Schematic)
3 T T T
2 [-
> 1p 1
2
o
g o
]
D
£
£
©
e 1 1
20 4
-3 L L L L L
0 05 1 15 2 25 3
Network Weight Uy

0®@00000
Gradient Descent = Local Optimization

Given an initial U, V, find 0 V with lower error.

. O0E
Ugj = Uy — ’77auk-

J
- OE
Vek = Vik =1 Bva

n =Learning Rate

@ If n too large, gradient descent won't converge. If too small,
convergence is slow. Usually we pick n =~ 0.001, then see
whether it converges or not; if not, we tweak 7 and then try
again.

@ Second-order methods like Newton's algorithm, L-BFGS,
ADAM, and Hessian-free optimization choose an optimal 7 at
each step, so they're MUCH faster.

Computing the Gradient

Z E;, = cross-entropy or MMSE

Obi\ _ 1§~
ank 72 (abg,) <8ng> - n ZEZkaI

i=1

where |'ve used one thing you already know, and one new
definition. Here's the thing you already know:

Oby;
byj = Z VekYki, therefore 5 él: = Vii
k

Here's the new definition:

e — oE; { zoi — Coi Cross-Entropy with Softmax
i =
(Zfl

Oby; — (0i)g'(bsi) MMSE with Nonlinearity g(b)

Gradient
000®000

Forward Propagation and Back-Propagation

3ng - Z €0iYki

e First, yji and z; are generated from X; in the forward pass.

@ Then ¢ is generated from zp; — (y; in the back-propagation.

Gradient
000000

g'(b): Derivatives of the Nonlinearities

Logistic
Logistic: g(b)=1/(1+€™) Tanh: g(b)=(e®-e®)/(e°+e™®) . ReLU: g(b)=max(0,b)
1.5
1 1 2
05 / 08 1
-0.5 -0.5
R 4 -1
1 2 0 2 4 1Y 2 0 2 4 2 2) 2 4
b b b
, 5Logistic Derivative: g'(b)=g(b)(1-g(b)) Tanh Derivative: g'(b)=(1-g(b)) s Unit Step: g(b)=u(b)
1.5
1 1 1
05 05 A 05
s —_— T 5 5
s 0 % 0 g 0
-0.5 -0.5! -0.5.
1 -1 1
8 2 0 2 4 1'§4 2 0 2 4 18, 2 0 2 4
b b b

Gradient
00000e0

Z=h(x,U,V)
which is decomposed as. ..

é é z = g(be) 7 = g(b)

by = Vko + D7 _1 VekYk b=Vy
vk = f(ak) y = f(a)
aK = ko + D07y UkiXj a=Ux

X is the input vector

Back-Propagating to the First Layer

OE 1~ (0EN (Da\ 1<~ _
Er n,z_; (83;(,') <8ukj> - n;dk,xﬂ

8Ukj

r

E;
where. .. 0, = ga = ZéeiVekf'(aki)
ki 9

Gradient
000000e

Forward Propagation and Back-Propagation

0E 1
v n Z €LiYki
tk i=1

OE 1<
==) OkiXji
8Ukj n; kXJ

e First, yji and z; are generated from X; in the forward pass.

@ Then €/ and dy; are generated from zy; — (y; in the
back-propagation.

	What is a Neural Net?
	Knowledge-Based Design
	Nonlinearities
	Error Metric
	Gradient Descent

