ECE 417 Fall 2018 Lecture 17: Neural Networks

Mark Hasegawa-Johnson

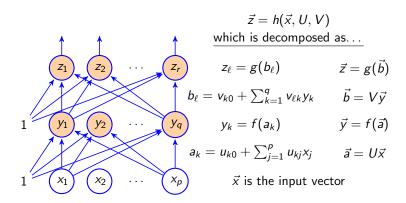
University of Illinois

October 23, 2018

Outline

- What is a Neural Net?
- 2 Knowledge-Based Design
- 3 Nonlinearities
- 4 Error Metric
- Gradient Descent

Two-Layer Feedforward Neural Network



A Neural Net is Made Of...

- Linear transformations: $\vec{a} = U\vec{x}$, $\vec{b} = V\vec{y}$, one per layer.
- Scalar nonlinearities: $\vec{y} = f(\vec{a})$ means that, element-by-element, $y_k = f(a_k)$ for some nonlinear function $f(\cdot)$.
- The nonlinearities can all be different, if you want. For today, I'll assume that all nodes in the first layer use one function $f(\cdot)$, and all nodes in the second layer use some other function $g(\cdot)$.
- Networks with more than two layers are called "Deep Neural Networks" (DNN). I won't talk about them today.

Andrew Barron (1993) proved that combining two layers of linear transforms, with one scalar nonlinearity between them, is enough to model **any** multivariate nonlinear function $\vec{z} = h(\vec{x})$.

Neural Network = Universal Approximator

Assume...

- Linear Output Nodes: g(b) = b
- Smoothly Nonlinear Hidden Nodes: $f'(a) = \frac{df}{da}$ finite
- Smooth Target Function: $\vec{z} = h(\vec{x}, U, V)$ approximates $\vec{\zeta} = h^*(\vec{x}) \in \mathcal{H}$, where \mathcal{H} is some class of sufficiently smooth functions of \vec{x} (functions whose Fourier transform has a first moment less than some finite number C)
- There are q hidden nodes, y_k , $1 \le k \le q$
- The input vectors are distributed with some probability density function, $p(\vec{x})$, over which we can compute expected values.

Then (Barron, 1993) showed that...

$$\max_{h^*(\vec{x}) \in \mathcal{H}} \min_{U,V} E\left[h(\vec{x},U,V) - h^*(\vec{x})|^2\right] \leq \mathcal{O}\left\{\frac{1}{q}\right\}$$

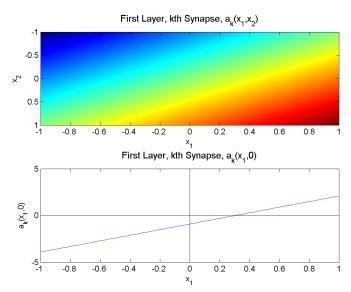
Neural Network Problems: Outline of Remainder of this Talk

- **1 Knowledge-Based Design.** Given U, V, f, g, what kind of function is $h(\vec{x}, U, V)$? Can we draw \vec{z} as a function of \vec{x} ? Can we heuristically choose U and V so that \vec{z} looks kinda like $\vec{\zeta}$?
- Nonlinearities. They come in pairs: the test-time nonlinearity, and the training-time nonlinearity.
- **§ Error Metric.** In what way should $\vec{z} = h(\vec{x})$ be "similar to" $\vec{\zeta} = h^*(\vec{x})$?
- **Training: Gradient Descent with Back-Propagation.** Given an initial U, V, how do I find \hat{U}, \hat{V} that more closely approximate $\vec{\zeta}$?

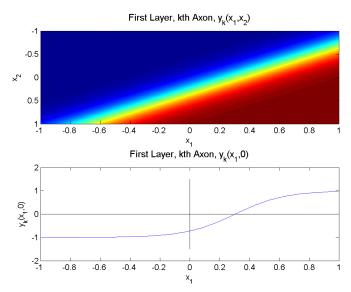
Outline

- What is a Neural Net?
- 2 Knowledge-Based Design
- 3 Nonlinearities
- 4 Error Metric
- Gradient Descent

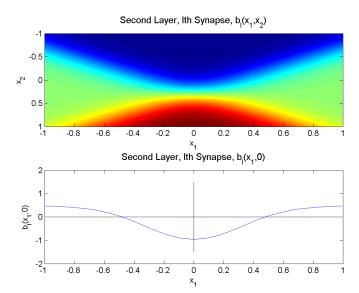
Synapse, First Layer: $a_k = u_{k0} + \sum_{j=1}^2 u_{kj} x_j$



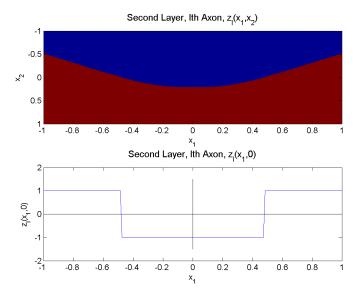
Axon, First Layer: $y_k = \tanh(a_k)$



Synapse, Second Layer: $b_\ell = extstyle v_{\ell 0} + \sum_{k=1}^2 extstyle v_{\ell k} extstyle y_k$



Axon, Second Layer: $z_{\ell} = \operatorname{sign}(b_{\ell})$



Outline

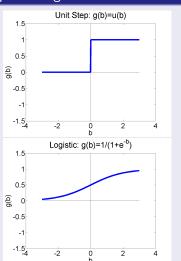
- What is a Neural Net?
- 2 Knowledge-Based Design
- 3 Nonlinearities
- 4 Error Metric
- Gradient Descent

Differentiable and Non-differentiable Nonlinearities

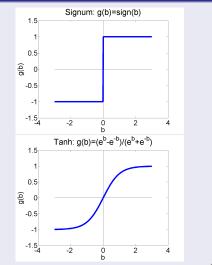
The nonlinearities come in pairs: (1) the **test-time nonlinearity** is the one that you use in the **output layer** of your **learned classifier**, e.g., in the app on your cell phone (2) the **training-time nonlinearity** is used in the output layer during training, and in the hidden layers during both training and test.

Application	Test-Time	Training-Time
	Output	Output & Hidden
	Nonlinearity	Nonlinearity
$\{0,1\}$ classification	step	logistic or ReLU
$\{-1,+1\}$ classification	signum	tanh
multinomial classification	argmax	softmax
regression	linear	(hidden nodes
		must be
		nonlinear)

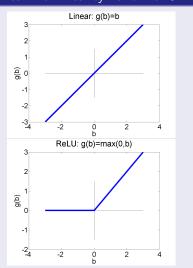
Step and Logistic nonlinearities



Signum and Tanh nonlinearities



"Linear Nonlinearity" and ReLU



Argmax and Softmax

Argmax:

$$z_{\ell} = \left\{ egin{array}{ll} 1 & b_{\ell} = \max_{m} b_{m} \\ 0 & ext{otherwise} \end{array} \right.$$

Softmax:

$$z_{\ell} = \frac{e^{b_{\ell}}}{\sum_{m} e^{b_{m}}}$$

Outline

- 1 What is a Neural Net?
- 2 Knowledge-Based Design
- 3 Nonlinearities
- 4 Error Metric
- Gradient Descent

Error Metric: MMSE for Linear Output Nodes

Minimum Mean Squared Error (MMSE)

$$U^*, V^* = \arg\min E = \arg\min \frac{1}{2n} \sum_{i=1}^n |\vec{\zeta_i} - \vec{z}(x_i)|^2$$

Why would we want to use this metric?

If the training samples $(\vec{x_i}, \vec{\zeta_i})$ are i.i.d., then in the limit as the number of training tokens goes to infinity,

$$h(\vec{x}) \to E\left[\vec{\zeta}|\vec{x}\right]$$

Error Metric: MMSE for Binary Target Vector

Binary target vector

Suppose

$$\zeta_{\ell} = \begin{cases} 1 & \text{with probability } P_{\ell}(\vec{x}) \\ 0 & \text{with probability } 1 - P_{\ell}(\vec{x}) \end{cases}$$

and suppose $0 \le z_{\ell} \le 1$, e.g., logistic output nodes.

Why does MMSE make sense for binary targets?

$$E[\zeta_{\ell}|\vec{x}] = 1 \cdot P_{\ell}(\vec{x}) + 0 \cdot (1 - P_{\ell}(\vec{x}))$$
$$= P_{\ell}(\vec{x})$$

So the MMSE neural network solution is

$$h(\vec{x}) \to E\left[\vec{\zeta}|\vec{x}\right] = P_{\ell}(\vec{x})$$

Softmax versus Logistic Output Nodes

Encoding the Neural Net Output using a "One-Hot Vector"

- Suppose $\vec{\zeta_i}$ is a "one hot" vector, i.e., only one element is "hot" $(\zeta_{\ell(i),i}=1)$, all others are "cold" $(\zeta_{mi}=0,\ m\neq\ell(i))$.
- Training logistic output nodes with MMSE training will approach the solution $z_\ell = \Pr{\{\zeta_\ell = 1 | \vec{x}\}}$, but there's no guarantee that it's a correctly normalized pmf $(\sum z_\ell = 1)$ until it has fully converged.
- Softmax output nodes guarantee that $\sum z_{\ell} = 1$.

Softmax output nodes

$$z_{\ell} = \frac{e^{b_{\ell}}}{\sum_{m} e^{b_{m}}}$$

Cross-Entropy

The softmax nonlinearity is "matched" to an error criterion called "cross-entropy," in the sense that its derivative can be simplified to have a very, very simple form.

- $\zeta_{\ell,i}$ is the true reference probability that observation $\vec{x_i}$ is of class ℓ . In most cases, this "reference probability" is either 0 or 1 (one-hot).
- $z_{\ell,i}$ is the neural network's hypothesis about the probability that $\vec{x_i}$ is of class ℓ . The softmax function constrains this to be $0 \le z_{\ell,i} \le 1$ and $\sum_{\ell} z_{\ell,i} = 1$.

The average cross-entropy between these two distributions is

$$E = -\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell} \zeta_{\ell,i} \log z_{\ell,i}$$

Cross-Entropy = Log Probability

Suppose token $\vec{x_i}$ is of class ℓ^* , meaning that $\zeta_{\ell^*,i}=1$, and all others are zero. Then cross-entropy is just the neural net's estimate of the negative log probability of the correct class:

$$E = -\frac{1}{n} \sum_{i=1}^{n} \log z_{\ell^*,i}$$

In other words, E is the average of the negative log probability of each training token:

$$E = -\frac{1}{n} \sum_{i=1}^{n} E_i, \quad E_i = -\log z_{\ell^*,i}$$

Cross-Entropy is matched to softmax

Now let's plug in the softmax:

$$E_i = -\log z_{\ell^*,i}, \quad z_{\ell^*,i} = \frac{e^{b_{\ell^*,i}}}{\sum_k e^{b_{ki}}}$$

Its gradient with respect to the softmax inputs, b_{mi} , is

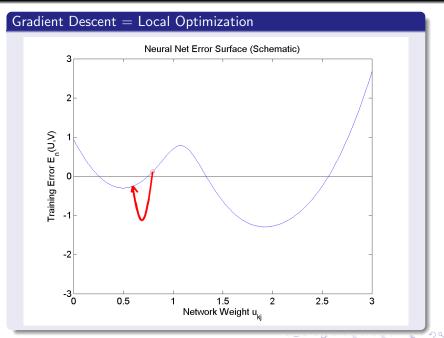
$$\begin{split} \frac{\partial E_{i}}{\partial b_{mi}} &= -\frac{1}{z_{\ell^{*},i}} \frac{\partial z_{\ell^{*},i}}{\partial b_{mi}} \\ &= \begin{cases} -\frac{1}{z_{\ell^{*},i}} \left(\frac{e^{b_{\ell^{*},i}}}{\sum_{k} e^{b_{ki}}} - \frac{\left(e^{b_{\ell^{*},i}}\right)^{2}}{\left(\sum_{k} e^{b_{ki}}\right)^{2}} \right) & m = \ell^{*} \\ -\frac{1}{z_{\ell^{*},i}} \left(-\frac{e^{b_{\ell^{*},i}} e^{b_{mi}}}{\left(\sum_{k} e^{b_{ki}}\right)^{2}} \right) & m \neq \ell^{*} \\ &= z_{mi} - \zeta_{mi} \end{cases} \end{split}$$

Error Metrics Summarized

- Use MSE to achieve $\vec{z}=E\left[\vec{\zeta}|\vec{x}\right]$. That's almost always what you want.
- If $\vec{\zeta}$ is a one-hot vector, then use Cross-Entropy (with a softmax nonlinearity on the output nodes) to guarantee that \vec{z} is a properly normalized probability mass function, and because it gives you the amazingly easy formula $\frac{\partial E_i}{\partial b_i} = z_{mi} \zeta_{mi}$.
- If ζ_{ℓ} is binary, but not necessarily one-hot, then use MSE (with a logistic nonlinearity) to achieve $z_{\ell} = \Pr{\{\zeta_{\ell} = 1 | \vec{x}\}}$.

Outline

- What is a Neural Net?
- 2 Knowledge-Based Design
- 3 Nonlinearities
- 4 Error Metric
- Gradient Descent



Gradient Descent = Local Optimization

Given an initial U, V, find \hat{U}, \hat{V} with lower error.

$$\hat{u}_{kj} = u_{kj} - \eta \frac{\partial E}{\partial u_{kj}}$$

$$\hat{v}_{\ell k} = v_{\ell k} - \eta \frac{\partial E}{\partial v_{\ell k}}$$

$\eta =$ Learning Rate

- If η too large, gradient descent won't converge. If too small, convergence is slow. Usually we pick $\eta \approx 0.001$, then see whether it converges or not; if not, we tweak η and then try again.
- ullet Second-order methods like Newton's algorithm, L-BFGS, ADAM, and Hessian-free optimization choose an optimal η at each step, so they're MUCH faster.

Computing the Gradient

$$E = \frac{1}{n} \sum_{i=1}^{n} E_i$$
, $E_i = \text{cross-entropy or MMSE}$

$$\frac{\partial E}{\partial v_{\ell k}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial E}{\partial b_{\ell i}} \right) \left(\frac{\partial b_{\ell i}}{\partial v_{\ell k}} \right) = \frac{1}{n} \sum_{i=1}^{n} \epsilon_{\ell i} y_{k i}$$

where I've used one thing you already know, and one new definition. Here's the thing you already know:

$$b_{\ell i} = \sum_{k} v_{\ell k} y_{k i},$$
 therefore $\frac{\partial b_{\ell i}}{\partial v_{\ell k}} = y_{k i}$

Here's the new definition:

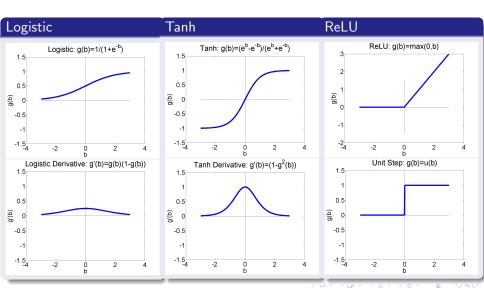
$$\epsilon_{\ell i} = \frac{\partial E_i}{\partial b_{\ell i}} = \left\{ \begin{array}{ll} z_{\ell i} - \zeta_{\ell i} & \text{Cross-Entropy with Softmax} \\ (z_{\ell i} - \zeta_{\ell i}) g'(b_{\ell i}) & \text{MMSE with Nonlinearity } g(b) \end{array} \right.$$

Forward Propagation and Back-Propagation

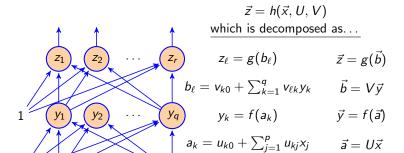
$$\frac{\partial E}{\partial v_{\ell k}} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_{\ell i} y_{k i}$$

- First, y_{ii} and $z_{\ell i}$ are generated from \vec{x}_i in the forward pass.
- Then $\epsilon_{\ell i}$ is generated from $z_{\ell i} \zeta_{\ell i}$ in the back-propagation.

g'(b): Derivatives of the Nonlinearities



 \vec{x} is the input vector



Back-Propagating to the First Laver

$$\frac{\partial E}{\partial u_{kj}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial E}{\partial a_{ki}} \right) \left(\frac{\partial a_{ki}}{\partial u_{kj}} \right) = \frac{1}{n} \sum_{i=1}^{n} \delta_{ki} x_{ji}$$

 x_p

where...
$$\delta_{ki} = \frac{\partial E_i}{\partial a_{ki}} = \sum_{\ell=1}^{r} \epsilon_{\ell i} v_{\ell k} f'(a_{ki})$$

Forward Propagation and Back-Propagation

$$\frac{\partial E}{\partial v_{\ell k}} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_{\ell i} y_{ki}$$
$$\frac{\partial E}{\partial u_{ki}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{ki} x_{ji}$$

- First, y_{ii} and $z_{\ell i}$ are generated from $\vec{x_i}$ in the forward pass.
- Then $\epsilon_{\ell i}$ and $\delta_{k i}$ are generated from $z_{\ell i} \zeta_{\ell i}$ in the back-propagation.