
Matched Filters Features ConvNets Back-Prop

ECE 417 Fall 2018 Lecture 18: ConvNets

Mark Hasegawa-Johnson

University of Illinois

October 25, 2018



Matched Filters Features ConvNets Back-Prop

Outline

1 Matched Filters

2 The Feature Design Problem in Computer Vision

3 Convolutional Neural Networks

4 Training a Convolutional Neural Network using Pooled
Back-Propagation



Matched Filters Features ConvNets Back-Prop

The Matched Filter Problem

Suppose

v [n] ∼ N (0, 1) is Gaussian white noise.

There are two possible hypotheses:

H0 : x [n] = v [n], or
H1 : x [n] = s[n] + v [n], for some known signal s[n].

Your task: find out if H1 or H0 is true.



Matched Filters Features ConvNets Back-Prop

Solution of the Matched Filter Problem

h[n] = s[−n], the “matched filter”

y [n] = h[n] ∗ x [n] =
∞∑

m=−∞
x [m]s[m − n] = rxs [n]

. . . then it can be shown that. . .

y [0] =

{
‖s‖2 + v H1

v H0

where v ∼ N (0, ‖s‖2) and ‖s‖2 =
∑

n s
2[n].



Matched Filters Features ConvNets Back-Prop

Solution of the Matched Filter Problem

So the Bayes-optimal classifier chooses some threshold (maybe
‖s‖2/2), and does this:

x [n]→ h[n] = s[−n] → y [n]→
{

y [0] > threshold : H1

y [0] < threshold : H0

Why it works:

Convolving with s[−n] is just like correlating with s[n].

The signal that correlates most strongly with s[n] is s[n].



Matched Filters Features ConvNets Back-Prop

Outline

1 Matched Filters

2 The Feature Design Problem in Computer Vision

3 Convolutional Neural Networks

4 Training a Convolutional Neural Network using Pooled
Back-Propagation



Matched Filters Features ConvNets Back-Prop

The Feature Design Problem in Computer Vision

PROBLEM: Is there a bicycle in this image?



Matched Filters Features ConvNets Back-Prop

The Feature Design Problem in Computer Vision

SOLUTION as of 2001 (Burl, Weber and Perona): (1) Use
matched filters to find recognizable parts, e.g., handlebars, wheels,
(2) If they occur in plausible geometry, call it a bicycle.



Matched Filters Features ConvNets Back-Prop

The Feature Design Problem in Computer Vision

WHY THE 2001 SOLUTION FAILS TO SCALE: How can you
design matched filters for all of the parts of every type of object
that you want to recognize?



Matched Filters Features ConvNets Back-Prop

Outline

1 Matched Filters

2 The Feature Design Problem in Computer Vision

3 Convolutional Neural Networks

4 Training a Convolutional Neural Network using Pooled
Back-Propagation



Matched Filters Features ConvNets Back-Prop

ConvNets: Key Idea

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

KEY IDEA:

Convolutional layers learn the features,

Output layer learns a linear classifier.



Matched Filters Features ConvNets Back-Prop

ConvNets: Input

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

Input to the ConvNet

x [n1, n2, j ] = image pixel in row n1, column n2, color j .



Matched Filters Features ConvNets Back-Prop

ConvNets: Hidden Layer

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

Hidden Layers in a ConvNet

CONVOLUTIONAL LAYER: a[n1, n2, k] = conv layer, pixel
n1, n2, channel k .

POOLING LAYER: y [n1, n2, k] = pooling layer, pixel n1, n2,
channel k.



Matched Filters Features ConvNets Back-Prop

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

ConvNets: Convolutional Layer

a[n1, n2, k] = u[n1, n2, j , k] ∗ x [n1, n2, j ]

u[:, :, :, k] is the kth filter

a[:, :, k] is the kth channel

The per-channel 2D convolution is defined as:

u[n1, n2, j , k]∗x [n1, n2, j ] ≡
∑
j

∑
m1

∑
m2

u[n1−m1, n2−m2, j , k]x [m1,m2, j ]



Matched Filters Features ConvNets Back-Prop

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

ConvNets: Max-Pooling Layer

y [n1, n2, k] = max
(m1,m2)∈A(n1,n2)

max(0, a[m1,m2, k])

M is the max-pooling stride

Finds the “maximum activation” of the kth filter within the
(n1, n2)th receptive field, which is defined as:

A(n1, n2) =


(m1,m2) :
n1M ≤ m1 < (n1 + 1)M,
n2M ≤ m2 < (n2 + 1)M





Matched Filters Features ConvNets Back-Prop

ConvNets: Output Layer

We can “vectorize” y [n1, n2, k] by just re-shaping it into a vector
~y . For example, if the size of the image is N1 × N2 × K , then we
could define ~y as

ykN1N2+n1N2+n2 = y [n1, n2, k]

Then the output layer is the classifier:

~z = softmax(~b) = softmax(V ~y)

. . . and then we define error just as in any other neural net, e.g.,
cross-entropy, or mean-squared error.



Matched Filters Features ConvNets Back-Prop

Outline

1 Matched Filters

2 The Feature Design Problem in Computer Vision

3 Convolutional Neural Networks

4 Training a Convolutional Neural Network using Pooled
Back-Propagation



Matched Filters Features ConvNets Back-Prop

Training the Output Layer

The output layer is trained just like in a regular neural net. For
training token ~xi , you first find ~ai , then ~yi , then ~bi , then ~zi , then
Ei , then

ε`i =
∂Ei

∂b`i

∂Ei

∂V
= ~εi~y

T
i

V ← V − η

n

n∑
i=1

~εi~y
T
i



Matched Filters Features ConvNets Back-Prop

Training the Convolutional Layer

In order to train u[m1,m2, j , k], we need to back-propagate the
error from the output layer (ε`i ) to the convolutional layer:

∂Ei

∂u[m1,m2, j , k]



Matched Filters Features ConvNets Back-Prop

Training the Convolutional Layer: Chain Rule

Chain rule:

∂Ei

∂u[m1,m2, j , k]
=
∑
n1

∑
n2

(
∂Ei

∂ai [n1, n2, k]

)(
∂ai [n1, n2, k]

∂u[m1,m2, j , k]

)



Matched Filters Features ConvNets Back-Prop

Training the Convolutional Layer: Forward-Prop

Chain rule:

∂Ei

∂u[m1,m2, j , k]
=
∑
n1

∑
n2

(
∂Ei

∂ai [n1, n2, k]

)(
∂ai [n1, n2, k]

∂u[m1,m2, j , k]

)
First, this part:

ai [n1, n2, k] =
∑
m1

∑
m2

u[m1,m2, j , k]xi [n1 −m1, n2 −m2, j ]

. . . so. . .

∂ai [n1, n2, k]

∂u[m1,m2, j , k]
= xi [n1 −m1, n2 −m2, j ]



Matched Filters Features ConvNets Back-Prop

Training the Convolutional Layer: Back-Prop

Chain rule:

∂Ei

∂u[m1,m2, j , k]
=
∑
n1

∑
n2

(
∂Ei

∂ai [n1, n2, k]

)(
∂ai [n1, n2, k]

∂u[m1,m2, j , k]

)
=
∑
n1

∑
n2

δi [n1, n2, k]xi [n1 −m1, n2 −m2, j ]

= δi [m1,m2, k] ∗ xi [m1,m2, j ]

Where we’ve now defined the back-prop error term as:

δi [n1, n2, k] =
∂Ei

∂ai [n1, n2, k]



Matched Filters Features ConvNets Back-Prop

Training the Convolutional Layer: Back-Prop

δi [n1, n2, k] =
∂Ei

∂ai [n1, n2, k]

=
∑
`

∑
o1

∑
o2

(
∂Ei

∂b`i

)(
∂b`i

∂yi [o1, o2, k]

)(
∂yi [o1, o2, k]

∂ai [n1, n2, k]

)

=


∑

` ε`iv`,kN1N2+o1N2+o2

if (n1, n2) = argmax(p1,p2)∈A(o1,o2) ai [p1, p2, k]

0
otherwise

That last condition just says that we back-prop only to the hidden
nodes a[n1, n2, k] that survive max-pooling, not to any others. And
to make the notation easier to remember, we can write

~δi = V T~εi |(n1,n2)



Matched Filters Features ConvNets Back-Prop

Training a ConvNet: Putting it all together

∂Ei

∂V
= ~εi~y

T
i

∂Ei

∂u[m1,m2, j , k]
= δi [m1,m2, k] ∗ xi [m1,m2, j ]

. . . where . . .

ε`i =
∂Ei

∂b`i

δi [n1, n2, k] = V T~εi |(n1,n2)


	Matched Filters
	The Feature Design Problem in Computer Vision
	Convolutional Neural Networks
	Training a Convolutional Neural Network using Pooled Back-Propagation

