ECE 417 Fall 2018 Lecture 18: ConvNets

Mark Hasegawa-Johnson

University of Illinois

October 25, 2018

Outline

- Matched Filters
- 2 The Feature Design Problem in Computer Vision
- Convolutional Neural Networks
- Training a Convolutional Neural Network using Pooled Back-Propagation

The Matched Filter Problem

Suppose

- $v[n] \sim \mathcal{N}(0,1)$ is Gaussian white noise.
- There are two possible hypotheses:
 - $H_0: x[n] = v[n]$, or
 - $H_1: x[n] = s[n] + v[n]$, for some known signal s[n].
- Your task: find out if H_1 or H_0 is true.

Solution of the Matched Filter Problem

$$h[n] = s[-n]$$
, the "matched filter"

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} x[m]s[m-n] = r_{xs}[n]$$

... then it can be shown that...

$$y[0] = \begin{cases} ||s||^2 + v & H_1 \\ v & H_0 \end{cases}$$

where $v \sim \mathcal{N}(0, \|s\|^2)$ and $\|s\|^2 = \sum_n s^2[n]$.

Solution of the Matched Filter Problem

So the Bayes-optimal classifier chooses some threshold (maybe $||s||^2/2$), and does this:

$$x[n] o h[n] = s[-n] o y[n] o \begin{cases} y[0] > \text{threshold} : H_1 \\ y[0] < \text{threshold} : H_0 \end{cases}$$

Why it works:

- Convolving with s[-n] is just like correlating with s[n].
- The signal that correlates most strongly with s[n] is s[n].

Outline

- Matched Filters
- 2 The Feature Design Problem in Computer Vision
- Convolutional Neural Networks
- 4 Training a Convolutional Neural Network using Pooled Back-Propagation

The Feature Design Problem in Computer Vision

PROBLEM: Is there a bicycle in this image?

The Feature Design Problem in Computer Vision

SOLUTION as of 2001 (Burl, Weber and Perona): (1) Use matched filters to find recognizable parts, e.g., handlebars, wheels, (2) If they occur in plausible geometry, call it a bicycle.

The Feature Design Problem in Computer Vision

WHY THE 2001 SOLUTION FAILS TO SCALE: How can you design matched filters for all of the parts of every type of object that you want to recognize?

Outline

- Matched Filters
- 2 The Feature Design Problem in Computer Vision
- 3 Convolutional Neural Networks
- Training a Convolutional Neural Network using Pooled Back-Propagation

ConvNets: Key Idea

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

KEY IDEA:

- Convolutional layers learn the features,
- Output layer learns a linear classifier.

ConvNets: Input

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

Input to the ConvNet

 $x[n_1, n_2, j] = \text{image pixel in row } n_1, \text{ column } n_2, \text{ color } j.$

ConvNets: Hidden Layer

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

Hidden Layers in a ConvNet

- CONVOLUTIONAL LAYER: $a[n_1, n_2, k] = \text{conv layer, pixel } n_1, n_2, \text{ channel } k.$
- POOLING LAYER: $y[n_1, n_2, k] = \text{pooling layer, pixel } n_1, n_2, \text{ channel } k.$

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

ConvNets: Convolutional Layer

$$a[n_1, n_2, k] = u[n_1, n_2, j, k] * x[n_1, n_2, j]$$

- u[:,:,k] is the k^{th} filter
- a[:,:,k] is the k^{th} channel
- The per-channel 2D convolution is defined as:

$$u[n_1, n_2, j, k] * x[n_1, n_2, j] \equiv \sum_{i} \sum_{m_1} \sum_{m_2} u[n_1 - m_1, n_2 - m_2, j, k] x[m_1, m_2, j]$$

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

ConvNets: Max-Pooling Layer

$$y[n_1, n_2, k] = \max_{(m_1, m_2) \in \mathcal{A}(n_1, n_2)} \max(0, a[m_1, m_2, k])$$

- M is the max-pooling stride
- Finds the "maximum activation" of the k^{th} filter within the $(n_1, n_2)^{\text{th}}$ receptive field, which is defined as:

$$\mathcal{A}(n_1, n_2) = \left\{ egin{array}{l} (m_1, m_2) : \\ n_1 M \leq m_1 < (n_1 + 1) M, \\ n_2 M \leq m_2 < (n_2 + 1) M \end{array}
ight\}$$

ConvNets: Output Layer

We can "vectorize" $y[n_1, n_2, k]$ by just re-shaping it into a vector \vec{y} . For example, if the size of the image is $N_1 \times N_2 \times K$, then we could define \vec{y} as

$$y_{kN_1N_2+n_1N_2+n_2} = y[n_1, n_2, k]$$

Then the output layer is the classifier:

$$\vec{z} = \operatorname{softmax}(\vec{b}) = \operatorname{softmax}(V\vec{y})$$

...and then we define error just as in any other neural net, e.g., cross-entropy, or mean-squared error.

Outline

- Matched Filters
- 2 The Feature Design Problem in Computer Vision
- Convolutional Neural Networks
- Training a Convolutional Neural Network using Pooled Back-Propagation

Training the Output Layer

The output layer is trained just like in a regular neural net. For training token $\vec{x_i}$, you first find $\vec{a_i}$, then $\vec{y_i}$, then $\vec{b_i}$, then $\vec{z_i}$, then $\vec{c_i}$, then

$$\epsilon_{\ell i} = \frac{\partial E_i}{\partial b_{\ell i}}$$
$$\frac{\partial E_i}{\partial V} = \vec{\epsilon}_i \vec{y}_i^T$$
$$V \leftarrow V - \frac{\eta}{n} \sum_{i=1}^n \vec{\epsilon}_i \vec{y}_i^T$$

Training the Convolutional Layer

In order to train $u[m_1, m_2, j, k]$, we need to back-propagate the error from the output layer $(\epsilon_{\ell i})$ to the convolutional layer:

$$\frac{\partial E_i}{\partial u[m_1,m_2,j,k]}$$

Training the Convolutional Layer: Chain Rule

Chain rule:

$$\frac{\partial E_i}{\partial u[m_1, m_2, j, k]} = \sum_{n_1} \sum_{n_2} \left(\frac{\partial E_i}{\partial a_i[n_1, n_2, k]} \right) \left(\frac{\partial a_i[n_1, n_2, k]}{\partial u[m_1, m_2, j, k]} \right)$$

Training the Convolutional Layer: Forward-Prop

Chain rule:

$$\frac{\partial E_i}{\partial u[m_1,m_2,j,k]} = \sum_{n_1} \sum_{n_2} \left(\frac{\partial E_i}{\partial a_i[n_1,n_2,k]} \right) \left(\frac{\partial a_i[n_1,n_2,k]}{\partial u[m_1,m_2,j,k]} \right)$$

First, this part:

$$a_i[n_1, n_2, k] = \sum_{m_1} \sum_{m_2} u[m_1, m_2, j, k] x_i[n_1 - m_1, n_2 - m_2, j]$$

. . . SO. . .

$$\frac{\partial a_i[n_1, n_2, k]}{\partial u[m_1, m_2, j, k]} = x_i[n_1 - m_1, n_2 - m_2, j]$$

Training the Convolutional Layer: Back-Prop

Chain rule:

$$\frac{\partial E_{i}}{\partial u[m_{1}, m_{2}, j, k]} = \sum_{n_{1}} \sum_{n_{2}} \left(\frac{\partial E_{i}}{\partial a_{i}[n_{1}, n_{2}, k]} \right) \left(\frac{\partial a_{i}[n_{1}, n_{2}, k]}{\partial u[m_{1}, m_{2}, j, k]} \right)
= \sum_{n_{1}} \sum_{n_{2}} \delta_{i}[n_{1}, n_{2}, k] x_{i}[n_{1} - m_{1}, n_{2} - m_{2}, j]
= \delta_{i}[m_{1}, m_{2}, k] * x_{i}[m_{1}, m_{2}, j]$$

Where we've now defined the back-prop error term as:

$$\delta_i[n_1, n_2, k] = \frac{\partial E_i}{\partial a_i[n_1, n_2, k]}$$

Training the Convolutional Layer: Back-Prop

$$\begin{split} \delta_{i}[n_{1},n_{2},k] &= \frac{\partial E_{i}}{\partial a_{i}[n_{1},n_{2},k]} \\ &= \sum_{\ell} \sum_{o_{1}} \sum_{o_{2}} \left(\frac{\partial E_{i}}{\partial b_{\ell i}} \right) \left(\frac{\partial b_{\ell i}}{\partial y_{i}[o_{1},o_{2},k]} \right) \left(\frac{\partial y_{i}[o_{1},o_{2},k]}{\partial a_{i}[n_{1},n_{2},k]} \right) \\ &= \begin{cases} \sum_{\ell} \epsilon_{\ell i} v_{\ell,k} N_{1} N_{2} + o_{1} N_{2} + o_{2} \\ \text{if } (n_{1},n_{2}) &= \operatorname{argmax}_{(p_{1},p_{2}) \in \mathcal{A}(o_{1},o_{2})} a_{i}[p_{1},p_{2},k] \\ 0 \\ \text{otherwise} \end{cases} \end{split}$$

That last condition just says that we back-prop only to the hidden nodes $a[n_1, n_2, k]$ that survive max-pooling, not to any others. And to make the notation easier to remember, we can write

$$\vec{\delta}_i = V^T \vec{\epsilon}_i|_{(n_1,n_2)}$$

Training a ConvNet: Putting it all together

$$\frac{\partial E_i}{\partial V} = \vec{\epsilon_i} \vec{y_i}^T$$

$$\frac{\partial E_i}{\partial u[m_1, m_2, j, k]} = \delta_i[m_1, m_2, k] * x_i[m_1, m_2, j]$$

. . . where . . .

$$\epsilon_{\ell i} = \frac{\partial E_i}{\partial b_{\ell i}}$$
$$\delta_i[n_1, n_2, k] = V^T \vec{\epsilon_i}|_{(n_1, n_2)}$$