ECE 417 Fall 2018 Lecture 18: ConvNets

Mark Hasegawa-Johnson

University of lllinois

October 25, 2018

I

1867

Matched Filters

Outline

@ Matched Filters

Matched Filters
®00

The Matched Filter Problem

Suppose
e v[n] ~ N(0,1) is Gaussian white noise.
@ There are two possible hypotheses:
o Hp: x[n] = v[n], or
o Hy : x[n] = s[n] + v[n], for some known signal s[n].

@ Your task: find out if Hy; or Hp is true.

Matched Filters
oeo

Solution of the Matched Filter Problem

h[n] = s[—n], the "matched filter"

[e.9]

ylnl = hlal s x{n) = 3" x{mls[m — n] = reln]

m=—0o0
...then it can be shown that. ..

sl|24+v H
o= { e

where v ~ N(0, ||s]|?) and ||s[|2 = >, s2[n].

Matched Filters
ooe

Solution of the Matched Filter Problem

So the Bayes-optimal classifier chooses some threshold (maybe
lls||2/2), and does this:

0] > threshold : H
x[n] = [hln] = s=nl | = yln] _>{ ﬁo} zthreshold: H;

Why it works:

e Convolving with s[—n] is just like correlating with s[n].

@ The signal that correlates most strongly with s[n] is s[n].

Features

Outline

© The Feature Design Problem in Computer Vision

Features
®00

The Feature Design Problem in Computer Vision

PROBLEM: Is there a bicycle in this image?

Features
oceo

The Feature Design Problem in Computer Vision

SOLUTION as of 2001 (Burl, Weber and Perona): (1) Use
matched filters to find recognizable parts, e.g., handlebars, wheels,
(2) If they occur in plausible geometry, call it a bicycle.

Features
ocoe

The Feature Design Problem in Computer Vision

WHY THE 2001 SOLUTION FAILS TO SCALE: How can you
design matched filters for all of the parts of every type of object
that you want to recognize?

ConvNets

Outline

© Convolutional Neural Networks

ConvNets
©00000

ConvNets: Key ldea

Feature maps

|

Convolutions Subsampling Convolutions Subsampling Fully connected

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

KEY IDEA:
e Convolutional layers learn the features,

@ Output layer learns a linear classifier.

ConvNets
0®0000

ConvNets: Input

Feature maps

-,
*., Output
\,i
Convolutions Subsampling Convolutions Subsampling Fully connected

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

Input to the ConvNet

x[n1, na, j] = image pixel in row ny, column ny, color j.

ConvNets
©00®000

ConvNets: Hidden Layer

Feature maps

R
“., Output

Convolutions Subsampling Convolutions Subsampling Fully connected

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

Hidden Layers in a ConvNet

o CONVOLUTIONAL LAYER: a[ni, ny, k] = conv layer, pixel
n1, ny, channel k.

@ POOLING LAYER: y[n1, np, k] = pooling layer, pixel ny, n,
channel k.

ConvNets
000®00

Feature maps

Convolutions c Fully connected

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

ConvNets: Convolutional Layer

a[n17 ny, k] = U[n]_, n27j7 k] *X[nla n27.j]

o u[:,:,:, k] is the k! filter

e a[:,:, k] is the k' channel

@ The per-channel 2D convolution is defined as:
ulm, my, j, Klsex[nn, m, jl =Y 0 N " ulm—my, na—mo, j, kx[my, ma, j]

j m m

ConvNets
0o000e0

Feature maps

Convolutions C Fully connected

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org

ConvNets: Max-Pooling Layer

y[ni, no, k] = max max(0, a[my, my, k])
(ml,mz)E.A(nl,nz)

@ M is the max-pooling stride

@ Finds the “maximum activation” of the k* filter within the

(n1, n)™ receptive field, which is defined as:
(my, m2) :
A(nl, n2) = mM < m < (n1 + 1)M,

mM < my < (n+1)M

ConvNets
oooooe

ConvNets: Output Layer

We can "vectorize” y[n1, na, k] by just re-shaping it into a vector
y. For example, if the size of the image is Ny x N> x K, then we
could define y as

YkNyNo+ny No+ny = Y[nb n, k]

Then the output layer is the classifier:

-,

Z = softmax(b) = softmax(Vy)

...and then we define error just as in any other neural net, e.g.,
cross-entropy, or mean-squared error.

Back-Prop

Outline

@ Training a Convolutional Neural Network using Pooled
Back-Propagation

Back-Prop
©000000

Training the Output Layer

The output layer is trained just like in a regular neural net. For
training token X;, you first find &;, then y;, then b;, then Z;, then

E;, then
OE;
€ri
4 Oby;
OE; _ eyl
ov !
Ve v-15ayT

Back-Prop
0®00000

Training the Convolutional Layer

In order to train u[my, my,j, k], we need to back-propagate the
error from the output layer (¢eg;) to the convolutional layer:

OE;
oulmy, my, j, K]

Back-Prop
[eeX Yololele}

Training the Convolutional Layer: Chain Rule

Chain rule:

8E,- . 8E, 83,‘[”1,”2,/(] >
6U[m1, ma, J, k] B ,,2an2 <8ai[n1a ny, k]) <8u[m1,m2,j, k]

Back-Prop
000®000

Training the Convolutional Layer: Forward-Prop

Chain rule:

8E,- o 8E,' 88,‘[”1,”2,/(])
oulmy, my,j, k] zn;%: <33i[n1, no, k]) <8u[m1,m2,j7 K]

First, this part:

ajlm, o, k] =Y " ulmy, my,j, klxi[n — my, np — my, j]

my mp
..SO...

83,’[/71, no, k]

W = Xi[”l —mi, N2 — mz,J]

Back-Prop
0000®00

Training the Convolutional Layer: Back-Prop

Chain rule:

8E; _ 8E,' Oa;[nl,ng,k] >
au[mlam2a.j7 k] B nzlé: (831'[”1’”2)!(]) (au[ml7m2>jv k]

= Z 25,'[”1, no, k]xi[ny — my, no — my, j|

mm

= 0;[my, my, k] * x;[m1, mo2, j]

Where we've now defined the back-prop error term as:

OE;

Oiln1, m, k] = 7 —1
[, n2, K] Oai[n1, na, k]

Back-Prop
00000e0

Training the Convolutional Layer: Back-Prop

OE;
daj[n1, na, k]

- ZZZ <ab&> <ay,[oall?£<;2,k]> <§:{::Z:g>

Ze €41 Ve, kNy No-+o1 No+02
if (nla ”2) = argmaX(p; pr)eA(o1,02) ai[p17 P2, k]

5,’[[11, no, k] =

0
otherwise

That last condition just says that we back-prop only to the hidden
nodes a[ny, ny, k| that survive max-pooling, not to any others. And
to make the notation easier to remember, we can write

5:=VTe

‘(nl,nz)

Back-Prop
[elelelolotel }

Training a ConvNet: Putting it all together

9E . 4
oV = €iY;

OE;
=0 k] * x; ;
du[my, my, j, K] di[m1, ma, k] % xi[m1, ma, j]

...where . ..
OE;

Silm, m, k] = VT &

n,ny)

	Matched Filters
	The Feature Design Problem in Computer Vision
	Convolutional Neural Networks
	Training a Convolutional Neural Network using Pooled Back-Propagation

