Lecture 22: Adversarial Image, Adversarial Training, Variational Autoencoders, and Generative Adversarial Networks

ECE 417: Multimedia Signal Processing Mark Hasegawa-Johnson

University of Illinois

Nov. 8, 2018

- Adversarial Images
- 2 Adversarial Training
- 3 Autoencoder
- Variational Autoencoder
- 5 Generative Adversarial Network
- **6** Conclusions

Outline

- Adversarial Images
- 2 Adversarial Training
- 3 Autoencoder
- 4 Variational Autoencode
- **5** Generative Adversarial Network
- 6 Conclusions

Review: ConvNet

Today's notation (like the MP, different from last week's lectures):

- $\hat{y}_{\ell} \in (0,1)$ is the network output for label ℓ , $1 \leq \ell \leq L$
 - Softmax output layer ensures that $\hat{y}_\ell \geq 0$ and $\sum_\ell \hat{y}_\ell = 1$.
- $y_{\ell} \in \{0,1\}$ is the reference bit for label ℓ , $1 \le \ell \le L$
 - One-hot encoding ensures that $y_{\ell} \ge 0$ and $\sum_{\ell} y_{\ell} = 1$.

Review: ConvNet Training

For some convolutional weight u_{jkmn} (weight connecting j^{th} input channel to k^{th} output channel, pixel (m, n)),

$$u_{kmn} \leftarrow u_{jkmn} - \eta \frac{\partial E}{\partial u_{jkmn}}$$

where

$$\label{eq:energy_energy} \textit{E} = -\ln \hat{\textit{y}}_{\text{true}},$$

$$\text{true} \in \{1, \dots, L\} \ \text{is the true label}$$

"Breaking" a ConvNet: Adversarial Examples

 $+.007 \times$

"panda"
57.7% confidence

 $sign(\nabla_x J(\theta, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_x J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"
99.3 % confidence

Credit: http://karpathy.github.io/2015/03/30/breaking-convnets/

Interesting Current Research Topics

- Suppose the CIA is recording your phone calls, and processing each one using a speaker-ID system. Can you make it believe that you are somebody else?
- Can you do that without knowing exactly what the CIA's neural net parameters are?
- Can you figure out whether news is fake versus real? Can the fake-news providers fool you?
- You have a speech recognizer trained for English. Can you "fool" it into believing that Swahili is English, in such a way that it generates correct Swahili transcriptions?
- You have a system that breaks in mysterious ways. Can you use adversarial examples to figure out why it's breaking?

"Breaking" a ConvNet

Modify the image $x_i[m, n]$ (j^{th} channel, pixel (m, n)) as

$$x_j[m,n] \leftarrow x_j[m,n] + \eta \frac{\partial E}{\partial x_j[m,n]}$$

where

$$E = -\ln \hat{y}_{true}$$

The result: with very small η , we can make the network believe the image is something else.

Intentionally Generating the Mistakes We Want

Suppose, instead, we do this:

$$x_k[m, n] \leftarrow x_k[m, n] + \eta \frac{\partial}{\partial x_k[m, n]} \left(\ln \hat{y}_{\mathsf{fake}} - \ln \hat{y}_{\mathsf{true}} \right)$$

Then we can force the network to believe that the image is of category "fake" instead of category "true."

Intentionally Generating the Mistakes We Want

 $Credit:\ http://karpathy.github.io/2015/03/30/breaking-convnets/$

Outline

- Adversarial Images
- 2 Adversarial Training
- 3 Autoencoder
- 4 Variational Autoencode
- 5 Generative Adversarial Network
- 6 Conclusions

Example of a Modern Speech Recognizer: Listen Attend & Spell (LAS). https://arxiv.org/abs/1508.01211

- Input: MFCC vectors \vec{x}_t at time t.
- Output: English characters (letters, spaces, punctuation).
- $\hat{y}_{t,\text{true}}$ is the softmax output at time t, for the character it's supposed to output at time t.
- Training Criterion: $E=-\sum_t \ln \hat{y}_{t, \text{true}}$

A problem that all speech recognizers have: speaker variation

- The problem: LAS is sometimes fooled by differences between different speakers, e.g., if a speaker has an unusual pronunciation pattern, or a really deep voice or something.
- The solution: force the hidden layers to contain as little information as possible about the speaker ID, while still containing as much information as possible about the words.

What is "Adversarial Training"?

- The basic idea: make a neural network robust to some particular type of noise.
- How: Force one of its hidden layers to be really really bad at classifying that type of noise.
 - Train an "adversary" neural net that observes the hidden layer, and from it, figures out which one of the noise signals is present in the input.
 - 2 Train the hidden layers in order to **increase** the error rate of the adversary.

Adversarial Training: General Idea

• ADVERSARY: The adversary tries to minimize its error rate,

$$E_{
m adversary} = -\ln \hat{s}_{
m true}$$

 NOISE-ROBUST MAIN SYSTEM: The main system tries to minimize the primary error rate, while simultaneously maximizing the error rate of the adversary:

$$E_{\text{primary}} = -\ln \hat{y}_{\text{true}}$$

$$E_{\text{noise-robust-primary}} = E_{\text{primary}} - E_{\text{adversary}}$$

Example: LAS with Adversarial Training

$$E_{
m adversary} = -\ln \hat{s}_{
m true}$$
 $E_{
m noise-robust-primary} = \ln \hat{s}_{
m true} - \sum_t \ln \hat{y}_{t,
m true}$

Example Research Topics

- Speech recognition, robust to speaker variation.
- ... or background noise; or even language ID...
- Image style: Identify the person who painted a particular image, regardless of what type of object is in the painting.
- Melody extraction: identify the melody being played, regardless of what type of instrument is playing it.

Outline

- Adversarial Images
- 2 Adversarial Training
- 3 Autoencoder
- 4 Variational Autoencoder
- **5** Generative Adversarial Network
- 6 Conclusions

And now, for something completely different

Credit: https://commons.wikimedia.org/wiki/File:Moebius_strip.svg

Until now, we've been studying the relationship between \vec{x} and \vec{y} . The goal of an auto-encoder is just to learn \vec{x} . Specifically, if $\vec{x} \in \Re^p$ is actually limited to a q-dimensional manifold, where q < p, then an auto-encoder learns the manifold.

Autoencoder: Basic Idea

Given input $\vec{x_i} \in \Re^p$, compute a shorter hidden state vector $\vec{z_i} = f(\vec{x_i})$, where $\vec{z_i} \in \Re^q$, q < p, such that $\vec{z_i}$ captures all of the "useful" information about $\vec{x_i}$.

The Autoencoder Training Criterion: Mean Squared Error

 $\vec{z_i}$ is passed through a second neural net to compute $\hat{x_i} = g(\vec{z_i})$, and then we train the neural net to minimize

$$E = \frac{1}{n} \sum_{i=1}^{n} \|\vec{x}_i - \hat{x}_i\|^2$$

Two-Layer Linear Autoencoder

$$E = \|\vec{x} - \hat{x}\|^2 = \sum_{j=1}^{p} (x_j - \hat{x}_j)^2$$

$$\hat{x}_1 \qquad \hat{x}_2 \qquad \hat{x}_p$$

$$\hat{x}_j = u_{j0} + \sum_{k=1}^{q} u_{kj} z_k \qquad \hat{x} = U^T \vec{z}$$

$$1 \qquad z_k = \sum_{j=1}^{p} u_{kj} (x_j - u_{j0}) \qquad \vec{z} = U \vec{x}$$

$$1 \qquad x_1 \qquad x_2 \qquad x_p \qquad \vec{x} \text{ is the input vector}$$

Analyzing the Two-Layer Linear Autoencoder

Define the data matrices:

$$X = [\vec{x}_1, \dots, \vec{x}_n]$$

$$Z = [\vec{z}_1, \dots, \vec{z}_n] = UX$$

$$\hat{X} = [\hat{x}_1, \dots, \hat{x}_n] = U^T Z = U^T UX$$

Then the error criterion is

$$E = \frac{1}{n} \sum_{i} (\vec{x}_i - \hat{x}_i)^T (\vec{x}_i - \hat{x}_i) = \frac{1}{n} \mathsf{trace} \left((X - \hat{X})^T (X - \hat{X}) \right)$$

$$E = \frac{1}{n} \operatorname{trace} \left((X - \hat{X})^T (X - \hat{X}) \right)$$

By the trace equality,

$$E = \frac{1}{n} \operatorname{trace} \left((X - \hat{X})(X - \hat{X})^T \right)$$

$$= \frac{1}{n} \operatorname{trace} \left(XX^T - U^T UXX^T - XX^T U^T U + U^T UXX^T U^T U \right)$$

Covariance matrix:

$$\Sigma = \frac{1}{n}XX^T = \frac{1}{n}\sum_{i=1}^n \vec{x}_i \vec{x}_i^T$$

Then the auto-encoder training criterion is just

$$E = \mathsf{trace}\left(\Sigma - U^{\mathsf{T}}U\Sigma - \Sigma U^{\mathsf{T}}U + U^{\mathsf{T}}U\Sigma U^{\mathsf{T}}U\right)$$

Suppose we set $U = [\vec{u}_1, \dots, \vec{u}_q]^T$ to be the first q eigenvectors of Σ (the ones with highest eigenvalues, λ_j). Then

$$E = \mathsf{trace}\left(\Sigma - \sum_{k=1}^{q} \lambda_k \vec{u}_k \vec{u}_k^T\right)$$

 \dots and any other choice has a worse error! Therefore the unique optimum value of U is a principal component analysis.

Deep Autoencoder

If an autoencoder has more than two layers, then it finds a sort of "nonlinear principal components:" a nonlinear manifold, $\vec{z} = f(\vec{x})$, that minimizes the error term

$$E = \frac{1}{n} \sum_{i=1}^{n} \|\vec{x}_i - g(\vec{z}_i)\|^2$$

Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Outline

- Adversarial Images
- 2 Adversarial Training
- Autoencoder
- 4 Variational Autoencoder
- **5** Generative Adversarial Network
- 6 Conclusions

Autoencoder pros and cons

- Things that work:
 - The reconstruction, $\hat{x} = g(\vec{z})$, reconstructs $\hat{x} \approx \vec{x}$ with the smallest possible MSE.
 - In that sense, the hidden vector \vec{z} (often called the "embedding") represents as much information about \vec{x} as it's possible to represent in a q-dimensional vector.
- Things that fail:
 - The input space \Re^p is infinite, but the training dataset X is finite; with enough trainable parameters, a deep auto-encoder can learn an embedding such that every training token is reconstructed with zero error. That's not very interesting.
 - If you pick some other \vec{z} at random and generate $g(\vec{z})$, you don't get a very good image.

The Solution: Variational Autoencoder

Instead of just $\vec{z} = f(\vec{x})$, a VAE learns $(\vec{\mu}, \Sigma) = f(\vec{x})$. It then forces $\mu \approx \vec{0}$ and $\Sigma \approx I$, so that we can use $\vec{z} \sim \mathcal{N}(\vec{\mu}, \Sigma)$ to generate "fake" images that are similar to the real ones.

Credit: https://www.doc.ic.ac.uk/ js4416/163/website/autoencoders/variational.html

VAE Generative Model

Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

VAE Generative Model

VAE Generative Model

For each token in the training database:

- PRIOR: Choose a mean and covariance, $(\vec{\mu}_i, \Sigma_i) \sim p(\vec{\mu}, \Sigma)$.
- HIDDEN: Choose a hidden vector $\vec{z}_i \sim p(\vec{z}|\vec{\mu}, \Sigma)$.
- OBSERVED: Choose an observed vector $\vec{x_i} \sim p(\vec{x}|\vec{z})$.

VAE Generative Model

• PRIOR: $\vec{\mu}$ is Gaussian, with zero mean and identity covariance. Σ is inverse-Wishart, with identity mean.

$$p(\vec{\mu}_i, \Sigma_i) \propto \prod_{k=1}^q \sigma_{ik} e^{-\frac{1}{2} \left(\mu_{ik}^2 + \sigma_{ik}^2 - 1\right)}$$

• HIDDEN: $\vec{z_i}$ is Gaussian, with mean $\vec{\mu_i}$ and covariance Σ_i .

$$p(\vec{z}_i|\vec{\mu}_i, \Sigma_i) = \mathcal{N}(\vec{\mu}_i, \Sigma_i)$$

• OBSERVED: $\vec{x_i}$ is Gaussian, with mean $g(\vec{z_i})$, and identity covariance.

$$p(\vec{x_i}|\vec{z_i}) \propto e^{-\frac{1}{2}||\vec{x_i} - g(\vec{z_i})||^2}$$

VAE Training Procedure

- SAMPLE X: choose $\vec{x_i}$ from the training database.
- GENERATE MU, SIGMA as $[\mu_{ij}, \sigma_{ij}] = f(\vec{x}_i)$, then penalize their error:

$$E_i^{(f)} = -\ln p(\vec{\mu}_i, \Sigma_i) = \frac{1}{2} \sum_{k=1}^q (\mu_{ik}^2 + \sigma_{ik}^2 - \ln \sigma_{ik}^2 - 1)$$

- SAMPLE Z: randomly from the distribution $\vec{z_i} \sim \mathcal{N}\left(\vec{\mu_i}, \Sigma_i\right)$.
- GENERATE X-HAT as $\hat{x}_i = g(\vec{z}_i)$, then penalize its error

$$E_i^{(g)} = -\ln p(\vec{x}_i|\vec{z}_i) = \frac{1}{2} \sum_{i=1}^{p} (x_{ij} - \hat{x}_{ij})^2$$

TOTAL: The total cost function is

$$E_i = E_i^{(f)} + E_i^{(g)}$$

VAE Generative Tests

The result of training is that you can generate pretty good new images by doing the following:

- ullet Generate $(\vec{\mu}, \Sigma)$ at random according to the known prior,
- Generate \vec{z} at random as $\mathcal{N}(\vec{\mu}, \Sigma)$,
- Generate $\hat{x} = g(\vec{z})$ with your neural net.

Outline

- Adversarial Images
- 2 Adversarial Training
- 3 Autoencoder
- 4 Variational Autoencoder
- **6** Generative Adversarial Network
- 6 Conclusions

Review: Data Augmentation

- For every example in your training corpus, $\vec{x_i}$ with label $\vec{y_i}$,...
- generate as many "fake examples" as you can, \hat{x}_i , such that all of the fake examples have the same label...
- then re-train your network using these new fake examples, as well as the real examples.

Data Augmentation Using a VAE

- Can we use a VAE to generate "fake examples" for data augmentation?
- THE PROBLEM: VAE doesn't know what types of variability will change the label.
- POSSIBLE SOLUTION: Can we train another network, to tell us whether the fake example has the same label or not?

Generative Adversarial Network (GAN)

Steps to train a GAN:

- 1 Train a generator to generate fake examples.
- Train an adversary to distinguish fake versus real training examples.
- 3 Re-train the whole thing all together:
 - The adversary is trying to correctly distinguish true data versus fake data.
 - The generator is trying to generate fake data that fools the adversary.

Generative Adversarial Network (GAN)

Credit: https://skymind.ai/wiki/generative-adversarial-network-gan

GAN Training Criterion

• ADVERSARY: Suppose that $y_i = 1$ if $\vec{x_i}$ is a true image, and $y_i = 0$ if $\vec{x_i}$ is a fake image. Suppose the adversary computes $\hat{y_i} = D(\vec{x_i}, \theta)$. The adversary wants to minimize the cross-entropy $H(y_i || \hat{y_i}) = -y_i \ln \hat{y_i} - (1 - y_i) \ln (1 - \hat{y_i})$:

$$\theta \leftarrow \theta - \frac{\partial H(y_i \| \hat{y}_i)}{\partial \theta}$$

• GENERATOR: The generator wants to make fake images $\hat{x}_i = g(\vec{z}_i)$ that fool the adversary, i.e., it wants to MAXIMIZE the cross-entropy:

$$g \leftarrow g + \frac{\partial H(y_i \| \hat{y}_i)}{\partial g}$$

GAN: How well does it work?

Imagenet fake images generated by a GAN on epochs 300, 800, and 5800.

 $Credit:\ http://kvfrans.com/generative-adversial-networks-explained/$

Outline

- Adversarial Images
- 2 Adversarial Training
- 3 Autoencoder
- 4 Variational Autoencoder
- **5** Generative Adversarial Network
- **6** Conclusions

Conclusions

- Adversarial images: modify the image in order to increase ConvNet error.
- Adversarial training: make the hidden layers robust to noise by training them to fool an adversary.
- Auto-encoder: a two-layer auto-encoder is PCA. A deep auto-encoder is a kind of nonlinear PCA.
- Variational autoencoder: Force your autoencoder to have a latent space distributed like $\vec{z} \sim \mathcal{N}(0, I)$, so that you can easily generate realistic fake images.
- Generative adversarial network: Train the VAE so it can fool a "real versus fake" discriminative adversary.