
Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Lecture 22: Adversarial Image, Adversarial
Training, Variational Autoencoders, and

Generative Adversarial Networks

ECE 417: Multimedia Signal Processing
Mark Hasegawa-Johnson

University of Illinois

Nov. 8, 2018



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Outline

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Review: ConvNet

Today’s notation (like the MP, different from last week’s lectures):

ŷ` ∈ (0, 1) is the network output for label `, 1 ≤ ` ≤ L

Softmax output layer ensures that ŷ` ≥ 0 and
∑

` ŷ` = 1.

y` ∈ {0, 1} is the reference bit for label `, 1 ≤ ` ≤ L

One-hot encoding ensures that y` ≥ 0 and
∑

` y` = 1.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Review: ConvNet Training

For some convolutional weight ujkmn (weight connecting j th input
channel to kth output channel, pixel (m, n)),

ukmn ← ujkmn − η
∂E

∂ujkmn

where
E = − ln ŷtrue,

true ∈ {1, . . . , L} is the true label



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

“Breaking” a ConvNet: Adversarial Examples

Credit: http://karpathy.github.io/2015/03/30/breaking-convnets/



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Interesting Current Research Topics

Suppose the CIA is recording your phone calls, and processing
each one using a speaker-ID system. Can you make it believe
that you are somebody else?

Can you do that without knowing exactly what the CIA’s
neural net parameters are?

Can you figure out whether news is fake versus real? Can the
fake-news providers fool you?

You have a speech recognizer trained for English. Can you
“fool” it into believing that Swahili is English, in such a way
that it generates correct Swahili transcriptions?

You have a system that breaks in mysterious ways. Can you
use adversarial examples to figure out why it’s breaking?



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

“Breaking” a ConvNet

Modify the image xj [m, n] (j th channel, pixel (m, n)) as

xj [m, n]← xj [m, n] + η
∂E

∂xj [m, n]

where
E = − ln ŷtrue

The result: with very small η, we can make the network believe the
image is something else.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Intentionally Generating the Mistakes We Want

Suppose, instead, we do this:

xk [m, n]← xk [m, n] + η
∂

∂xk [m, n]

(
ln ŷfake − ln ŷtrue

)
Then we can force the network to believe that the image is of
category “fake” instead of category “true.”



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Intentionally Generating the Mistakes We Want

Credit: http://karpathy.github.io/2015/03/30/breaking-convnets/



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Outline

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Example of a Modern Speech Recognizer: Listen Attend &
Spell (LAS). https://arxiv.org/abs/1508.01211

Input: MFCC vectors ~xt at time t.
Output: English characters (letters, spaces, punctuation).
ŷt,true is the softmax output at time t, for the character it’s
supposed to output at time t.
Training Criterion: E = −

∑
t ln ŷt,true



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

A problem that all speech recognizers have: speaker
variation

The problem: LAS is sometimes fooled by differences between
different speakers, e.g., if a speaker has an unusual
pronunciation pattern, or a really deep voice or something.

The solution: force the hidden layers to contain as little
information as possible about the speaker ID, while still
containing as much information as possible about the
words.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

What is “Adversarial Training”?

The basic idea: make a neural network robust to some
particular type of noise.

How: Force one of its hidden layers to be really really bad at
classifying that type of noise.

1 Train an “adversary” neural net that observes the hidden layer,
and from it, figures out which one of the noise signals is
present in the input.

2 Train the hidden layers in order to increase the error rate of
the adversary.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Adversarial Training: General Idea

ADVERSARY: The adversary tries to minimize its error rate,

Eadversary = − ln ŝtrue

NOISE-ROBUST MAIN SYSTEM: The main system tries to
minimize the primary error rate, while simultaneously
maximizing the error rate of the adversary:

Eprimary = − ln ŷtrue

Enoise-robust-primary = Eprimary − Eadversary



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Example: LAS with Adversarial Training

Eadversary = − ln ŝtrue

Enoise-robust-primary = ln ŝtrue −
∑
t

ln ŷt,true



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Example Research Topics

Speech recognition, robust to speaker variation.

. . . or background noise; or even language ID. . .

Image style: Identify the person who painted a particular
image, regardless of what type of object is in the painting.

Melody extraction: identify the melody being played,
regardless of what type of instrument is playing it.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Outline

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

And now, for something completely different
Credit: https://commons.wikimedia.org/wiki/File:Moebius strip.svg

Until now, we’ve been studying the relationship between ~x and ~y .
The goal of an auto-encoder is just to learn ~x . Specifically, if
~x ∈ <p is actually limited to a q-dimensional manifold, where
q < p, then an auto-encoder learns the manifold.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Autoencoder: Basic Idea

Given input ~xi ∈ <p, compute a shorter hidden state vector
~zi = f (~xi ), where ~zi ∈ <q, q < p, such that ~zi captures all of the
“useful” information about ~xi .

The Autoencoder Training Criterion: Mean Squared Error

~zi is passed through a second neural net to compute x̂i = g(~zi ),
and then we train the neural net to minimize

E =
1

n

n∑
i=1

‖~xi − x̂i‖2



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Two-Layer Linear Autoencoder

1 x1 x2 . . . xp ~x is the input vector

zk =
∑p

j=1 ukj(xj − uj0) ~z = U~x

1 z1 z2 . . . zq

x̂j = uj0 +
∑q

k=1 ukjzk x̂ = UT~z

x̂1 x̂2 . . . x̂p

E = ‖~x − x̂‖2 =
∑p

j=1(xj − x̂j)
2



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Analyzing the Two-Layer Linear Autoencoder

Define the data matrices:

X = [~x1, . . . , ~xn]

Z = [~z1, . . . , ~zn] = UX

X̂ = [x̂1, . . . , x̂n] = UTZ = UTUX

Then the error criterion is

E =
1

n

∑
i

(~xi − x̂i )
T (~xi − x̂i ) =

1

n
trace

(
(X − X̂ )T (X − X̂ )

)



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

E =
1

n
trace

(
(X − X̂ )T (X − X̂ )

)
By the trace equality,

E =
1

n
trace

(
(X − X̂ )(X − X̂ )T

)
=

1

n
trace

(
XXT − UTUXXT − XXTUTU + UTUXXTUTU

)



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Covariance matrix:

Σ =
1

n
XXT =

1

n

n∑
i=1

~xi~x
T
i

Then the auto-encoder training criterion is just

E = trace
(

Σ− UTUΣ− ΣUTU + UTUΣUTU
)

Suppose we set U = [~u1, . . . , ~uq]T to be the first q eigenvectors of
Σ (the ones with highest eigenvalues, λj). Then

E = trace

(
Σ−

q∑
k=1

λk~uk~u
T
k

)

. . . and any other choice has a worse error! Therefore the unique
optimum value of U is a principal component analysis.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Deep Autoencoder

If an autoencoder has more than two layers, then it finds a sort of
“nonlinear principal components:” a nonlinear manifold, ~z = f (~x),
that minimizes the error term

E =
1

n

n∑
i=1

‖~xi − g(~zi )‖2

Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Outline

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Autoencoder pros and cons

Things that work:

The reconstruction, x̂ = g(~z), reconstructs x̂ ≈ ~x with the
smallest possible MSE.
In that sense, the hidden vector ~z (often called the
“embedding”) represents as much information about ~x as it’s
possible to represent in a q-dimensional vector.

Things that fail:

The input space <p is infinite, but the training dataset X is
finite; with enough trainable parameters, a deep auto-encoder
can learn an embedding such that every training token is
reconstructed with zero error. That’s not very interesting.
If you pick some other ~z at random and generate g(~z), you
don’t get a very good image.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

The Solution: Variational Autoencoder

Instead of just ~z = f (~x), a VAE learns (~µ,Σ) = f (~x). It then
forces µ ≈ ~0 and Σ ≈ I , so that we can use ~z ∼ N (~µ,Σ) to
generate “fake” images that are similar to the real ones.

Credit: https://www.doc.ic.ac.uk/ js4416/163/website/autoencoders/variational.html



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

VAE Generative Model
Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

VAE Generative
Model VAE Generative Model

For each token in the training database:

PRIOR: Choose a mean and covariance,
(~µi ,Σi ) ∼ p(~µ,Σ).

HIDDEN: Choose a hidden vector
~zi ∼ p(~z |~µ,Σ).

OBSERVED: Choose an observed vector
~xi ∼ p(~x |~z).



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

VAE Generative Model

PRIOR: ~µ is Gaussian, with zero mean and identity
covariance. Σ is inverse-Wishart, with identity mean.

p(~µi ,Σi ) ∝
q∏

k=1

σike
− 1

2(µ2ik+σ
2
ik−1)

HIDDEN: ~zi is Gaussian, with mean ~µi and covariance Σi .

p(~zi |~µi ,Σi ) = N (~µi ,Σi )

OBSERVED: ~xi is Gaussian, with mean g(~zi ), and identity
covariance.

p(~xi |~zi ) ∝ e−
1
2
‖~xi−g(~zi )‖2



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

VAE Training Procedure

SAMPLE X: choose ~xi from the training database.

GENERATE MU, SIGMA as [µij , σij ] = f (~xi ), then penalize
their error:

E
(f )
i = − ln p(~µi ,Σi ) =

1

2

q∑
k=1

(
µ2ik + σ2ik − lnσ2ik − 1

)
SAMPLE Z: randomly from the distribution ~zi ∼ N (~µi ,Σi ).

GENERATE X-HAT as x̂i = g(~zi ), then penalize its error

E
(g)
i = − ln p(~xi |~zi ) =

1

2

p∑
j=1

(xij − x̂ij)
2

TOTAL: The total cost function is

Ei = E
(f )
i + E

(g)
i



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

VAE Generative Tests

The result of training is that you can generate pretty good new
images by doing the following:

Generate (~µ,Σ) at random according to the known prior,
Generate ~z at random as N (~µ,Σ),
Generate x̂ = g(~z) with your neural net.

Credit: https://www.youtube.com/watch?v=XNZIN7Jh3Sg



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Outline

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Review: Data Augmentation
For every example in your training corpus, ~xi with label ~yi ,. . .
generate as many “fake examples” as you can, x̂i , such that all
of the fake examples have the same label. . .
then re-train your network using these new fake examples, as
well as the real examples.

Data Augmentation Using a VAE
Can we use a VAE to generate “fake examples” for data
augmentation?
THE PROBLEM: VAE doesn’t know what types of variability
will change the label.
POSSIBLE SOLUTION: Can we train another network, to tell
us whether the fake example has the same label or not?



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Generative Adversarial Network (GAN)

Steps to train a GAN:

1 Train a generator to generate fake examples.

2 Train an adversary to distinguish fake versus real training
examples.

3 Re-train the whole thing all together:

The adversary is trying to correctly distinguish true data versus
fake data.
The generator is trying to generate fake data that fools the
adversary.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Generative Adversarial Network (GAN)

Credit: https://skymind.ai/wiki/generative-adversarial-network-gan



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

GAN Training Criterion

ADVERSARY: Suppose that yi = 1 if ~xi is a true image, and
yi = 0 if ~xi is a fake image. Suppose the adversary computes
ŷi = D(~xi , θ). The adversary wants to minimize the
cross-entropy H(yi‖ŷi ) = −yi ln ŷi − (1− yi ) ln(1− ŷi ):

θ ← θ − ∂H(yi‖ŷi )
∂θ

GENERATOR: The generator wants to make fake images
x̂i = g(~zi ) that fool the adversary, i.e., it wants to MAXIMIZE
the cross-entropy:

g ← g +
∂H(yi‖ŷi )

∂g



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

GAN: How well does it work?

Imagenet fake images generated by a GAN on epochs 300, 800, and 5800.
Credit: http://kvfrans.com/generative-adversial-networks-explained/

.



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Outline

1 Adversarial Images

2 Adversarial Training

3 Autoencoder

4 Variational Autoencoder

5 Generative Adversarial Network

6 Conclusions



Adversarial Images Adversarial Training Autoencoder VAE GAN Conclusions

Conclusions

Adversarial images: modify the image in order to increase
ConvNet error.

Adversarial training: make the hidden layers robust to noise by
training them to fool an adversary.

Auto-encoder: a two-layer auto-encoder is PCA. A deep
auto-encoder is a kind of nonlinear PCA.

Variational autoencoder: Force your autoencoder to have a
latent space distributed like ~z ∼ N (0, I ), so that you can
easily generate realistic fake images.

Generative adversarial network: Train the VAE so it can fool a
“real versus fake” discriminative adversary.


	Adversarial Images
	Adversarial Training
	Autoencoder
	Variational Autoencoder
	Generative Adversarial Network
	Conclusions

