Lecture 24: Barycentric Coordinates

ECE 417: Multimedia Signal Processing Mark Hasegawa-Johnson

University of Illinois

11/14/2018

(1) Overview of MP4
(2) Barycentric Coordinates
(3) Conclusion

Outline

(1) Overview of MP4
(2) Barycentric Coordinates
(3) Conclusion

Goal of MP4: Generate video frames (right) by warping a static image (left).

MP4 full outline

How it is done (Full walkthrough: Tuesday November 27)

lip_height, width $=$ NeuralNet (MFCC) out_triangs $=$ LinearlyInterpolate (inp_triangs,lip_height,width) inp_coord $=$ BaryCentric (out_coord,inp_triangs,out_triangs) out_image = BilinearInterpolate (inp_coord,inp_image)

Outline

(1) Overview of MP4

(2) Barycentric Coordinates

(3) Conclusion

Affine Transformations

Affine Transformations

* Combines inear transformations, and Translations

Piece-wise affine transform

- OK, so somebody's given us a lot of points, arranged like this in little triangles.
- We know that we want a DIFFERENT AFFINE TRANSFORM for EACH TRIANGLE. For the $k^{\text {th }}$ triangle, we want to have

$$
A_{k}=\left[\begin{array}{ccc}
a_{k} & b_{k} & c_{k} \\
d_{k} & e_{k} & f_{k} \\
0 & 0 & 1
\end{array}\right]
$$

Piece-wise affine transform

$$
\text { output point: } \vec{x}=\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right], \quad \text { input point: } \vec{u}=\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]
$$

Definition: if \vec{x} is in the $k^{\text {th }}$ triangle in the output image, then we want to use the $k^{\text {th }}$ affine transform:

$$
\vec{x}=A_{k} \vec{u}, \quad \vec{u}=A_{k}^{-1} \vec{x}
$$

If it is known that $\vec{u}=A_{k}^{-1} \vec{x}$ for some unknown affine transform matrix A_{k},
then
the method of barycentric coordinates finds \vec{u} without ever finding A_{k}.

Barycentric Coordinates

Barycentric coordinates turns the problem on its head. Suppose \vec{x} is in a triangle with corners at \vec{x}_{1}, \vec{x}_{2}, and \vec{x}_{3}. That means that

$$
\vec{x}=\lambda_{1} \vec{x}_{1}+\lambda_{2} \vec{x}_{2}+\lambda_{3} \vec{x}_{3}
$$

where

$$
0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1
$$

and

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}=1
$$

Barycentric Coordinates

Suppose that all three of the corners are transformed by some affine transform A, thus

$$
\vec{u}_{1}=A \vec{x}_{1}, \quad \vec{u}_{2}=A \vec{x}_{2}, \quad \vec{u}_{3}=A \vec{x}_{3}
$$

Then if

$$
\text { If: } \vec{x}=\lambda_{1} \vec{x}_{1}+\lambda_{2} \vec{x}_{2}+\lambda_{3} \vec{x}_{3}
$$

Then:

$$
\begin{aligned}
\vec{u} & =A \vec{x} \\
& =\lambda_{1} A \vec{x}_{1}+\lambda_{2} A \vec{x}_{2}+\lambda_{3} A \vec{x}_{3} \\
& =\lambda_{1} \vec{u}_{1}+\lambda_{2} \vec{u}_{2}+\lambda_{3} \vec{u}_{3}
\end{aligned}
$$

In other words, once we know the λ 's, we no longer need to find A. We only need to know where the corners of the triangle have moved.

Barycentric Coordinates

If

$$
\vec{x}=\lambda_{1} \vec{x}_{1}+\lambda_{2} \vec{x}_{2}+\lambda_{3} \vec{x}_{3}
$$

Then

How to find Barycentric Coordinates

But how do you find λ_{1}, λ_{2}, and λ_{3} ?
$\vec{x}=\lambda_{1} \vec{x}_{1}+\lambda_{2} \vec{x}_{2}+\lambda_{3} \vec{x}_{3}=\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right]\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right]=\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right]$
Write this as:

$$
\vec{x}=X \vec{\lambda}
$$

Therefore

$$
\vec{\lambda}=X^{-1} \vec{x}
$$

This always works: the matrix X is always invertible, unless all three of the points $\vec{x}_{1}, \overrightarrow{x_{2}}$, and \vec{x}_{3} are on a straight line.

How do you find out which triangle the point is in?

- Suppose we have K different triangles, each of which is characterized by a 3×3 matrix of its corners

$$
X_{k}=\left[\vec{x}_{1, k}, \vec{x}_{2, k}, \vec{x}_{3, k}\right]
$$

where $\vec{x}_{m, k}$ is the $m^{\text {th }}$ corner of the $k^{\text {th }}$ triangle.

- Notice that, for any point \vec{x}, for ANY triangle X_{k}, we can find

$$
\lambda=X_{k}^{-1} \vec{x}
$$

- However, the coefficients λ_{1}, λ_{2}, and λ_{3} will all be between 0 and 1 if and only if the point \vec{x} is inside the triangle X_{k}. Otherwise, some of the λ 's must be negative.

The Method of Barycentric Coordinates

To construct the animated output image frame $O(x, y)$, we do the following things:

- First, for each of the reference triangles U_{k} in the input image $I(u, v)$, decide where that triangle should move to. Call the new triangle location X_{k}.
- Second, for each output pixel (x, y) :
- For each of the triangles, find $\vec{\lambda}=X_{k}^{-1} \vec{x}$.
- Choose the triangle for which all of the λ coefficients are $0 \leq \lambda \leq 1$.
- Find $\vec{u}=U_{k} \vec{\lambda}$.
- Estimate $I(u, v)$ using bilinear interpolation.
- Set $O(x, y)=I(u, v)$.

Outline

(1) Overview of MP4

(2) Barycentric Coordinates
(3) Conclusion

lip_height, width $=$ NeuralNet (MFCC)
out_triangs $=$ LinearlyInterpolate (inp_triangs,lip_height,width) inp_coord $=$ BaryCentric (out_coord,inp_triangs,out_triangs) out_image $=$ BilinearInterpolate (inp_coord,inp_image)

