Lecture 27: Recurrent Neural Nets

ECE 417: Multimedia Signal Processing
Mark Hasegawa-Johnson

University of lllinois

12/4/2018

I

1867



@ TDNN & RNN = Nonlinear FIR & IIR
© Vanishing/Exploding Gradient

© Gated Recurrent Units

@ Long Short-Term Memory (LSTM)

© Conclusion



TDNN & RNN = Nonlinear FIR & IIR

Outline

@ TDNN & RNN = Nonlinear FIR & IIR



TDNN & RNN = Nonlinear FIR & IIR

Basics of DSP: Filtering

ylnj =Y hlmx[n — m]

m=—0o0

Y(z) = H(z2)X(2)
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Finite Impulse Response (FIR)

N-1

yln] = hlmlx[n — m]
m=0

The coefficients, h[m], are chosen in order to optimally position
the N — 1 zeros of the transfer function, ry, defined according to:

N—-1 N-1
H(z) =Y hlmlz=" =h[0] [] 1 - nz?)
m=0 k=1
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Infinite Impulse Response (IIR)

N-1 M—1
y[n] = Z bmx[n — m] + Z amy[n— m]
m=0 m=1

The coefficients, by, and ap,, are chosen in order to optimally
position the N — 1 zeros and M — 1 poles of the transfer function,
ri and pg, defined according to:

> g bmz ™" i (L=nz )
H(z) = M—1_ _,,  P05mM-1 )
1= m1amZ 1 (1= piz=1)
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Time Delay Neural Net (TDNN)=FIR + Nonlinearity

N-1 N-1
yln]=¢g (Z h[m]x[n — m]) , yln=§ (Z h[m]x[n — m])

m=0 m=0

The coefficients, h[m], are chosen to minimize the error. For
example, suppose that there is just one target, t[N], that must be
achieved at time n = N, so the error term might be just

E= 2 (/[N — [Ny

OE _ OE 0y[N] _ oo
8h[m] = 3y N] on[m) ~ OV INIxln = m]

Where §[n] = a n] is defined as the back-prop error.
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Recurrent Neural Net (RNN) = IIR + Nonlinearity

M-—1
ylnl=g (X[n] + > amyln— m]) ;o ylnl=g()
m=1

The coefficients, a,,, are chosen to minimize the error. For
example, suppose that E = %(y[N] — t[N])?, then:

NOOE dyln]  h .
8am Z $ Oyln] 8ya[m] - ;}ﬂnly[nly[n — m|
M—-1
d[n] = 8?/[En] = mz_l5[n—|— mly[n + m]an,



Vanishing/Exploding Gradient

Outline

© Vanishing/Exploding Gradient



Vanishing/Exploding Gradient
®0

Vanishing /Exploding Gradient

@ The “vanishing gradient” problem refers to the tendency of
%};[[’X]] to disappear, exponentially, when N — n is large.

@ The “exploding gradient” problem refers to the tendency of
%}’[N] to explode toward infinity, exponentially, when N — n is
x[n]

large.

o If the largest feedback coefficient is |a| > 1, then you get
exploding gradient. If not, you get vanishing gradient.
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Example: Vanishing Gradient

e
ylnl = x[n] + ay[n — 1] | =
£ = LM - ein? )
=5 y o]\
Then
OE OE !
= = 5 0 | | : ]
Ox[n]  0Oy[n] (7] L
Image credit: PeterQ,
where Wikipedia
[n] = ad[n + 1] = a"="S[N]
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Gated Recurrent Units (GRU)

Gated recurrent units solve the vanishing gradient problem by
making the feedback coefficient, f[n], a sigmoidal function of the
inputs. When the input causes f[n] &~ 1, then the recurrent unit
remembers its own past, with no forgetting (no vanishing
gradient). When the input causes f[n] ~ 0, then the recurrent unit
immediately forgets all of the past.

y[n] = i[n]x[n] + f[n]y[n — 1]
where the input and forget gates depend on x[n] and y[n], as

i[n] = o (bix[n] + ajy[n —1]) € (0,1)
fln] = o (bmx[n] + ary[n —1]) € (0,1)



Gated Recurrent Units
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How does GRU work? Example

For example, suppose that the inputs just coincidentally have
values that cause the following gate behavior:

1 |1 n=ng
ifn} = { 0 otherwise

_J 0 n=ng
Fln] = { 1 otherwise

y[n] = i[n]x[n] + f[n]y[n — 1]

Then y[N] = y[N —1] = ... = y[no] = x[no], memorized! And

therefore
dy[N] [ 1 n=ng
Ox[n] | 0 otherwise




Training the Gates

ylnl = ilnlx[n] + fn]y[n — 1]
i[n] = o (bix[n] + ajy[n — 1]) € (0,1)
f(n] = o (bmx[n] + ary[n —1]) € (0,1)

N

(‘9E B OE 0y|[n] 0i[n]
B Z 8y[n] di[n] Ob;

- Zé[n]x[n]al[n]
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Long Short-Term Memory (LSTM)
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Characterizing Human Memory

INPUT GATE PERCEPTION
OUTPUT GATE ACTION

Pr {remember} = p et/ 7™ 4 (1 — prpy)e t/ Tsmm



Long Short-Term Memory (LSTM)

Neural Network Model: LSTM

i[n] = input gate = o(b;x[n] + aic[n — 1])
o[n] = output gate = o(box[n] + aoc[n — 1])
f[n] = forget gate = o(bsx[n] + arc[n — 1])

c[n] = memory cell

y[n] = o[nlc[n]
c[n] = fn]c[n — 1] + i[n]g (bex[n] + acc[n — 1])
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@ TDNN is a one-dimensional ConvNet, the nonlinear version of
an FIR filter. Coefficients are shared across time steps.

@ RNN is the nonlinear version of an IIR filter. Coefficients are
shared across time steps. Error is back-propagated from every
output time step to every input time step.

@ Vanishing gradient problem: the memory of an RNN decays
exponentially.
@ Solution: GRU

@ An LSTM is a GRU with one more gate, allowing it to decide
when to output information from LTM back to STM.
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