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Basics of DSP: Filtering

y [n] =
∞∑

m=−∞
h[m]x [n −m]

Y (z) = H(z)X (z)
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Finite Impulse Response (FIR)

y [n] =
N−1∑
m=0

h[m]x [n −m]

The coefficients, h[m], are chosen in order to optimally position
the N − 1 zeros of the transfer function, rk , defined according to:

H(z) =
N−1∑
m=0

h[m]z−m = h[0]
N−1∏
k=1

(
1− rkz

−1)
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Infinite Impulse Response (IIR)

y [n] =
N−1∑
m=0

bmx [n −m] +
M−1∑
m=1

amy [n −m]

The coefficients, bm and am, are chosen in order to optimally
position the N − 1 zeros and M − 1 poles of the transfer function,
rk and pk , defined according to:

H(z) =

∑N−1
m=0 bmz

−m

1−
∑M−1

m=1 amz
−m

= b0

∏N−1
k=1

(
1− rkz

−1)∏M−1
k=1 (1− pkz−1)
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Time Delay Neural Net (TDNN)=FIR + Nonlinearity

y [n] = g

(
N−1∑
m=0

h[m]x [n −m]

)
, ẏ [n] = ġ

(
N−1∑
m=0

h[m]x [n −m]

)

The coefficients, h[m], are chosen to minimize the error. For
example, suppose that there is just one target, t[N], that must be
achieved at time n = N, so the error term might be just

E =
1

2
(y [N]− t[N])2

∂E

∂h[m]
=

∂E

∂y [N]

∂y [N]

∂h[m]
= δ[N]ẏ [N]x [n −m]

Where δ[n] = ∂E
∂y [n] is defined as the back-prop error.
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Recurrent Neural Net (RNN) = IIR + Nonlinearity

y [n] = g

(
x [n] +

M−1∑
m=1

amy [n −m]

)
, ẏ [n] = ġ (·)

The coefficients, am, are chosen to minimize the error. For
example, suppose that E = 1

2 (y [N]− t[N])2, then:

∂E

∂am
=

N∑
n=0

∂E

∂y [n]

∂y [n]

∂am
=

N∑
n=0

δ[n]ẏ [n]y [n −m]

δ[n] =
∂E

∂y [n]
=

M−1∑
m=1

δ[n + m]ẏ [n + m]am
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Vanishing/Exploding Gradient

The “vanishing gradient” problem refers to the tendency of
∂y [N]
∂x[n] to disappear, exponentially, when N − n is large.

The “exploding gradient” problem refers to the tendency of
∂y [N]
∂x[n] to explode toward infinity, exponentially, when N − n is
large.

If the largest feedback coefficient is |a| > 1, then you get
exploding gradient. If not, you get vanishing gradient.
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Example: Vanishing Gradient

Suppose

y [n] = x [n] + ay [n − 1]

E =
1

2
(y [N]− t[N])2

Then

∂E

∂x [n]
=

∂E

∂y [n]
= δ[n]

where

δ[n] = aδ[n + 1] = aN−nδ[N]

Exponential Decay

Image credit: PeterQ,
Wikipedia
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Gated Recurrent Units (GRU)

Gated recurrent units solve the vanishing gradient problem by
making the feedback coefficient, f [n], a sigmoidal function of the
inputs. When the input causes f [n] ≈ 1, then the recurrent unit
remembers its own past, with no forgetting (no vanishing
gradient). When the input causes f [n] ≈ 0, then the recurrent unit
immediately forgets all of the past.

y [n] = i [n]x [n] + f [n]y [n − 1]

where the input and forget gates depend on x [n] and y [n], as

i [n] = σ (bix [n] + aiy [n − 1]) ∈ (0, 1)

f [n] = σ (bmx [n] + af y [n − 1]) ∈ (0, 1)
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How does GRU work? Example

For example, suppose that the inputs just coincidentally have
values that cause the following gate behavior:

i [n] =

{
1 n = n0
0 otherwise

f [n] =

{
0 n = n0
1 otherwise

y [n] = i [n]x [n] + f [n]y [n − 1]

Then y [N] = y [N − 1] = . . . = y [n0] = x [n0], memorized! And
therefore

∂y [N]

∂x [n]
=

{
1 n = n0
0 otherwise
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Training the Gates

y [n] = i [n]x [n] + f [n]y [n − 1]

i [n] = σ (bix [n] + aiy [n − 1]) ∈ (0, 1)

f [n] = σ (bmx [n] + af y [n − 1]) ∈ (0, 1)

∂E

∂bi
=

N∑
n=0

∂E

∂y [n]

∂y [n]

∂i [n]

∂i [n]

∂bi

=
N∑

n=0

δ[n]x [n]
∂i [n]

∂bi
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Characterizing Human Memory

LONG
TERM

SHORT
TERM

INPUT GATE

OUTPUT GATE

PERCEPTION

ACTION

Pr {remember} = pLTMe−t/TLTM + (1− pLTM)e−t/TSTM
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Neural Network Model: LSTM

i [n] = input gate = σ(bix [n] + aic[n − 1])

o[n] = output gate = σ(box [n] + aoc[n − 1])

f [n] = forget gate = σ(bf x [n] + af c[n − 1])

c[n] = memory cell

y [n] = o[n]c[n]

c[n] = f [n]c[n − 1] + i [n]g (bcx [n] + acc[n − 1])
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TDNN is a one-dimensional ConvNet, the nonlinear version of
an FIR filter. Coefficients are shared across time steps.

RNN is the nonlinear version of an IIR filter. Coefficients are
shared across time steps. Error is back-propagated from every
output time step to every input time step.

Vanishing gradient problem: the memory of an RNN decays
exponentially.

Solution: GRU

An LSTM is a GRU with one more gate, allowing it to decide
when to output information from LTM back to STM.
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