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Linear Transforms
A linear transform "⃗ = $%⃗ maps vector 
space %⃗ onto vector space "⃗.  For 
example: the matrix $ = 1 1

0 2 maps 
the vectors 
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Linear Transforms
A linear transform "⃗ = $%⃗ maps vector 
space %⃗ onto vector space "⃗.  For 
example: the matrix $ = 1 1

0 2 maps 
the vectors 
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Linear Transforms
A linear transform "⃗ = $%⃗ maps vector 
space %⃗ onto vector space "⃗.  The 
absolute value of the determinant of A 
tells you how much the area of a unit 
circle is changed under the 
transformation.  For example: if $ =
1 1
0 2 , then the unit circle in %⃗ (which 

has an area of )) is mapped to an 
ellipse with an area of ) *+,( $ ) =
2).
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Eigenvectors
• For a D-dimensional square matrix, 

there may be up to D different 
directions "⃗ = $% such that, for some 
scalar &%, 

'$% = &%$%
• For example: if ' = 1 1

0 2 , then the 
eigenvectors and eigenvalues are
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Eigenvectors
• An eigenvector is a direction, not just a 

vector.  That means that if you multiply an 
eigenvector by any scalar, you get the same 
eigenvector: if !"# = %#"#, then it’s also 
true that &!"# = &%#"#

• For example: the following are all the same 
eigenvector

"' =

1
2
1
2

, 2"' = 1
1 ,−"' =

− 1
2

− 1
2

• Since scale doesn’t matter, by convention, 
we normalize so that "# ' = 1 and the 
first nonzero element is positive.
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Eigenvectors
• Notice that only square matrices can 

have eigenvectors.  For a non-square 
matrix, the equation !"# = %#"# is 
impossible --- the dimension of the 
output is different from the 
dimension of the input.
• Not all matrices have eigenvectors!  

For example, a rotation matrix 
doesn’t have any real-valued 
eigenvectors:

& = cos * − sin *
sin * cos *
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Eigenvalues
!"# = %#"#
!"# = %#& "#

!"# − %#& "# = 0
(! − %#&) "# = 0

That means that when you use the linear 
transform (! − %#&) to transform the unit 
circle, the result has zero area.  Remember 
that the area of the output is + ! − %#& .  So 
that means that, for any eigenvalue %#, the 
determinant of the matrix difference is zero:

! − %#& = 0
Example:
! − %,& = 1 1

0 2 − 2 1 0
0 1 = −1 1
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Eigenvalues
Let’s talk about that equation, ! − #$% = 0.  Remember how the 
determinant is calculated, for example if

! =
( ) *
+ , -
. ℎ 0

, then ! − #% = 0means that

0 = ! − #% =
( − # ) *
+ , − # -
. ℎ 0 − #

=

(( − #)(, − #) 0 − # − ) + 0 − # − .- + * +ℎ − . , − #
• We assume that (, ), *, +, ,, -, ., ℎ, 0 are all given in the problem statement.  

Only # is unknown.  So the equation ! − #% = 0 is a D’th order 
polynomial in one variable.
• The fundamental theorem of algebra says that a D’th order polynomial has 

D roots (counting repeated roots and complex roots).



Eigenvalues
So a DxD matrix always has D eigenvalues (counting complex and 
repeated eigenvalues).  This is true even if the matrix has no 
eigenvectors!!  The eigenvalues are the D solutions of the polynomial 
equation

! − #$% = 0



Positive Definite Matrix
• A linear transform "⃗ = $%⃗ is called 

“positive definite” (written $ ≻ 0) if, for 
any vector %⃗,

%⃗($%⃗ > 0
• So, you can see that this means %⃗("⃗ >0. 
• So this means that a matrix is positive 

definite if and only if the output of the 
transform, "⃗, is never rotated away 
from the input, %⃗, by 90 degrees or 
more!  ß (useful geometric intuition)
• For example, the matrix $ = 1 1

0 2 is 
positive-definite.
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Symmetric matrices
We’ve been working with “right eigenvectors:”

!"# = %#"#
There may also be left eigenvectors, which are row vectors &#', and 
corresponding left eigenvalues (#:

&#'! = (#&#'
If A is symmetric (! = !'), then the left and right eigenvectors and 
eigenvalues are the same, because

%#"⃗#' = %#"# ' = !"# ' = "⃗#'!' = "⃗#'!
But %#"⃗#' = "⃗#'! means that lambda and v satisfy the definition of left 
eigenvalue and eigenvector, as well as right.



positive definite matrices
you can do an interesting thing if you multiply the matrix by its 
eigenvectors both before and after:

"⃗#$%"⃗# = "⃗#$ '#"⃗# = '# "⃗# (
( = '#

So if a matrix is positive definite, then all of its eigenvalues are positive 
real numbers.  It turns out that the opposite is also true:

A matrix is positive definite if and only if all of its eigenvalues are 
positive. 



Symmetric positive definite matrices
Symmetric positive definite matrices turn out to also have one more 
unbelievably useful property: their eigenvectors are orthogonal.

"⃗#$"⃗% = 0 if ( ≠ *
If ( = * then, by convention, we have

"⃗#$"⃗# = "⃗ +
+ = 1

So suppose we create the matrix
- = "⃗., "⃗+, … , "⃗1

This is an orthonormal matrix:
-$- = 2

It turns out that, also, --$ = 2.



Symmetric positive definite matrices
If A is symmetric (! = !#), then

%⃗&#!%⃗& = %⃗&# '&%⃗& = '& %⃗& (
( = '&

…but also…

%⃗)#%⃗* = +1, . = /
0, . ≠ /

That means we can write ! as 

! =2
)34

5
')%⃗)%⃗)# = 6Λ6#

Because
%⃗*#!%⃗* = ∑)345 ')%⃗*#%⃗)%⃗)#%⃗* = '*



Symmetric positive definite matrices
If A is symmetric and positive definite we can write

! =#
$%&

'
($*⃗$*⃗$+ = ,Λ,+

Equivalently

,+!, = ,+,Λ,+, = .Λ. = Λ



Covariance matrices
Suppose we have a dataset containing N independent sample vectors, 
"⃗#.  The true mean is approximately given by the sample mean,

$⃗ = & "⃗ ≈ 1
)*
#+,

-
"⃗#

Similarly, the true covariance matrix is approximately given by the 
sample covariance matrix,

Σ = & "⃗ − $⃗ "⃗ − $⃗ 0 ≈ 1
)*
#+,

-
"⃗# − $⃗ "⃗# − $⃗ 0



Covariance matrices
Define the “sum-of-squares matrix” to be 

! = #
$%&

'
)⃗$ − +⃗ )⃗$ − +⃗ ,

So that the sample covariance is Σ ≈ !/0.  Suppose that we define the 
centered data matrix to be the following DxN matrix:

12 = )⃗& − +⃗, )⃗4 − +⃗, … , )⃗' − +⃗
Then the sum-of-squares matrix is

! = 12 12, = )⃗& − +⃗, … , )⃗' − +⃗
)⃗& − +⃗ ,

…
)⃗' − +⃗ ,



Covariance matrices
Well, a sum-of-squares matrix is obviously symmetric.  It’s also almost 
always positive definite:

"⃗#$"⃗ = "⃗#("⃗' − )⃗), … , "⃗#("⃗- − )⃗)
"⃗' − )⃗ #"⃗

…
"⃗- − )⃗ #"⃗

That quantity is positive unless the new vector, "⃗, is orthogonal to 
("⃗.−)⃗) for every vector in the training database.  As long as / ≥ 1, 

that’s really, really unlikely.



Covariance matrices
So a sum-of-squares matrix can be written as

! =#
$%&

'
($*⃗$*⃗$+ = ,Λ,+

And the covariance can be written as

Σ = !
/ = 1

/#
$%&

'
($*⃗$*⃗$+ = , Λ
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Principal components
Suppose that 

Λ =
#$ 0 0
0 … 0
0 0 #'

, ) = +⃗$, … , +⃗'

are the eigenvalue and eigenvector matrices of S, respectively.  Define 
the principal components of ,⃗- to be ./- = +⃗/0 ,⃗- − 2⃗ , or

.⃗- = )0 ,⃗- − 2⃗ =
+⃗$0 ,⃗- − 2⃗

…
+⃗'0 ,⃗- − 2⃗



Principal components
Suppose that Λ and V are the eigenvalue and eigenvector matrices of S, 
respectively.  Define the principal components to be #⃗$ = &' (⃗$ − *⃗ .
Then the principal components #+$ are not correlated with each other, and 
the variance of each one is given by the corresponding eigenvalue of S.

, #⃗#⃗' ≈ 1
/0$12

3
#⃗$#⃗$' =

1
/0$12

3 #2$
…
#5$

#2$,… , #5$

= 1
/0$12

3
&' (⃗$ − *⃗ (⃗$ − *⃗ '&

= &'7& = Λ =
82 0 0
0 … 0
0 0 85



Mahalanobis Distance 
Review



Mahalanobis form of the multivariate 
Gaussian, dependent dimensions
If the dimensions are dependent, and jointly Gaussian, then we can still 
write the multivariate Gaussian as

!" $⃗ = & $⃗; (⃗, Σ = 1
2-Σ ./0 1

2.0 3⃗24 5678 3⃗24

We call this the Mahalanobis form because the exponent is the squared 
Mahalanobis distance (with weight matrix Σ) between $⃗ and (⃗:

960 $⃗, (⃗ = $⃗ − (⃗ ;Σ2. $⃗ − (⃗



Example

Suppose that !" and !# are linearly correlated Gaussians with means 1 
and -1, respectively, and with variances 1 and 4, and covariance 1. 

%⃗ = 1
−1

Remember the definitions of variance and covariance: 
)"# = * !" − %" # = 1
)## = * !# − %# # = 4

)"# = )#" = * !" − %" !# − %# = 1

Σ = 1 1
1 4



Example

The	contour	lines	of	this	Gaussian	are	the	lines	of	constant	
Mahalanobis distance	between	6⃗ and	7⃗.		For	example,	to	plot	the	
>? 6⃗, 7⃗ = 1 and >? 6⃗, 7⃗ = 2 ellipses, we find the solutions of

1 = >?C 6⃗, 7⃗ = 6⃗ − 7⃗ EΣGH 6⃗ − 7⃗
and

4 = >?C 6⃗, 7⃗ = 6⃗ − 7⃗ EΣGH 6⃗ − 7⃗



Example



PCA = Eigenvectors of the 
Covariance Matrix



Symmetric positive definite matrices
If Σ is symmetric and positive semi-definite we can write

Σ = #Λ#%
and

#%Σ# = Λ
Where Λ is a diagonal matrix of the eigenvalues, and # is an 

orthonormal matrix of the eigenvectors.



Inverse of a positive definite matrix
The	inverse	of	a	positive	definite	matrix	is:

Σ45 = 7Λ4579
Proof:

Σ Σ45 = 7Λ797Λ4579 = 7ΛΛ4579 = 779 = :
where

Λ45 =

1
<5

0 0

0 1
<>

…

0 … 1
<@



Mahalanobis distance again

Remember	that

*+, .⃗, 0⃗ = .⃗ − 0⃗ 3Σ56 .⃗ − 0⃗
But we can write this as

*+, .⃗, 0⃗ = .⃗ − 0⃗ 37Λ5673 .⃗ − 0⃗
= 9⃗3 Λ569⃗

Where the vector 9⃗ is defined to be the principal components of .⃗: 

9⃗ = 73 .⃗ − 0⃗ =
:63 .⃗ − 0⃗

…
:<3 .⃗ − 0⃗



Facts about ellipses

The formula

1 = $⃗%Λ'($⃗
… or equivalently

1 = $()
*(

+⋯+ $-
)

*-
… is the formula for an ellipsoid. If *( ≥ *) ≥ ⋯*- then the biggest main axis 
of the ellipse is the direction in which $( ≠ 0 and all of the other principal 
components are $1 = 0.  This happens when 2⃗ − 4⃗ ∝ 6(, because in that 
case:

6(% 2⃗ − 4⃗ ≠ 0
61% 2⃗ − 4⃗ = 0, 8 ≠ 1



Example

Suppose that
Σ = 1 1

1 4
We get the eigenvalues from the determinant equation: Σ − &' =
1 − & 4 − & − 1 = &( − 5& + 3which equals zero for & = ,± ./

( .
We get the eigenvectors by solving  &0 = Σ0, which gives

0. ∝
1

3 + 13
2

, 0( ∝
1

3 − 13
2

Where the constant of proportionality is whatever’s necessary to make 
vectors unit-length; we don’t really care what it is.



Example
So the principal axes of the ellipse 
are in the directions

!" ∝
1

3 + 13
2

,

!) ∝
1

3 − 13
2



Example
In fact, another way to write this 
ellipse is

1

=
#$% '⃗ − )⃗

*

+$

+
#*% '⃗ − )⃗

*

+*



Example
In fact, it’s useful to talk about Σ in 
this way:
• The first principal component, "#, 

is the part of  %⃗ − '⃗ that’s in the 
(# direction.  It has a variance of )#.
• The second principal component, 
"*, is the part of  %⃗ − '⃗ that’s in 
the (* direction.  It has a variance 
of )*.
• The principal components are 

uncorrelated with each other.
• If %⃗ is Gaussian, then "# and "* are 

independent Gaussian random 
variables.



Summary

• Principal component directions are the eigenvectors of the covariance 
matrix (or of the sum-of-squares matrix – same directions, because 
they are just scaled by N)
• Principal components are the projections of each training example 

onto the principal component directions
• Principal components are uncorrelated with each other: the 

covariance is zero
• The variance of each principal component is the corresponding 

eigenvalue of the covariance matrix



Implications

• The total energy in the signal, ! #⃗ − %⃗ &
& , is equal to the sum of the 

eigenvalues.
• If you want to keep only a small number of dimensions, but keep 

most of the energy, you can do it by keeping the principal 
components with the highest corresponding eigenvalues. 


