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• What spectrum do people hear?  The basilar membrane
• Frequency scales for hearing: mel scale
• Mel-filter spectral coefficients (also called “filterbank features”)
• Speech Production: Consonants and Vowels
• Parseval’s Theorem: Cepstral Distance = Spectral Distance



What spectrum do people 
hear?  Basilar membrane



Inner ear



Basilar membrane 
of the cochlea = a 
bank of mechanical 
bandpass filters



Frequency scales for hearing: 
mel scale



Mel-scale

• The experiment:
• Play tones A, B, C
• Let the user adjust tone D until pitch(D)-pitch(C) sounds the same as pitch(B)-

pitch(A)

• Analysis: create a frequency scale m(f) such that m(D)-m(C) = m(B)-
m(A)

• Result: ! " = 2595 log*+ 1 + .
/++



Mel Frequency Spectral 
Coefficients (Filterbank

Coefficients)



Mel filterbank coefficients: convert the spectrum 
from Hertz-frequency to mel-frequency
• Goal: instead of computing

!" = ln & ("().+)-.
/

We want
!" = ln & 0"

Where the frequencies 0" are uniformly spaced on a mel-scale, i.e., 
m 0"(2 − m(0") is a constant across all k.
The problem with that idea: we don’t want to just sample the spectrum.  We 
want to summarize everything that’s happening within a frequency band.



Mel filterbank coefficients: convert the spectrum 
from Hertz-frequency to mel-frequency
The solution:
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*
+,-."(0) 2 '34

5
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Mel filterbank coefficients: convert the spectrum 
from Hertz-frequency to mel-frequency



Speech Production



The Source-Filter Model of Speech Production
(Chiba & Kajiyama, 1940)

• Sources: there are only three, all of them have wideband spectrum
• Voicing: vibration of the vocal folds, same type of aerodynamic mechanism as 

a flag flapping in the wind. 
• Frication or Aspiration: turbulence created when air passes through a narrow 

aperture
• Burst: the “pop” that occurs when high air pressure is suddenly released

• Filter: 
• Vocal tract = the air cavity between glottis and lips
• Just like a flute or a shower stall, it has resonances
• The excitation has energy at all frequencies; excitation at the resonant 

frequencies is enhanced



Different sounds: Consonants
• Place of articulation
– Where is the constriction/blocking of the air stream?

• Manner of articulation
– Stops: /p, t, k, b, d, g/
– Fricatives: /f, s, S, v, z, Z/
– Affricates: /tS, dZ/
– Approximants/Liquids: /l, r, w, j/
– Nasals: /m, n, ng/

• Voicing

Scharenborg, 2017



Speech signal: Time domain

!" = $
%"

=8ms 

/k/ burst
/k/ aspiration

voicing



• https://www.youtube.com/watch?v=DcNMCB-Gsn8

Recorded in 1962, Ken Stevens
Source: YouTube

Speech sound production
Scharenborg, 2017



The Source-Filter Model
• The speech signal, ! " , is created by convolving (∗) an excitation 

signal $ " through a vocal tract filter ℎ "
! " = ℎ " ∗ $ "

• The Fourier transform of speech is therefore the product of excitation 
times filter:

' ( = )((), (
• Excitation includes all of the information about voicing, frication, or 

burst.  
• Filter includes all of the information about the vocal tract resonances, 

which are called “formants.”



Source: V/UV, !"
• The most important thing about voiced excitation is that it is periodic, with 

a period called the “pitch period,” #"
• It’s reasonable to model voiced excitation as a simple sequence of 

impulses, one impulse every #" seconds:
$(&) = )

*+,-

-
.(& −0#")

• The Fourier transform of an impulse train is an impulse train (to prove this: 
use Fourier series):

1 2 = 1
#"

)
4+,-

-
.(2 − 5!")

...where !" = 6
78

is the pitch frequency.  It’s the number of times per second 
that the vocal folds slap together.



The Source-Filter Model
Transfer Function  log|H(f)|

Voice Source Spectrum log|E(f)|

Speech Spectrum log|S(f)|=log|H(f)|+log|E(f)|

!" =spacing between 
adjacent pitch harmonics =
125Hz



Filter: !", !$, !%, …
• The vocal tract is just a tube.  At most frequencies, it just passes the 

excitation signal with no modification at all (' ( = 1).
• The important exception: the vocal tract has resonances, like a 

clarinet or a shower stall. These resonances are called “formant 
frequencies,” numbered in order: !" < !$ < !% < ⋯.  Typically 
0 < !" < 1000 < !$< 2000 < !% < 3000Hz and so on, but there 
are some exceptions.
• At the resonant frequencies, the resonance enhances the energy of 

the excitation, so the transfer function ' ( is large at those 
frequencies, and small at other frequencies.



The Source-Filter Model
Transfer Function  log|H(f)|

Voice Source Spectrum log|E(f)|

Speech Spectrum log|S(f)|=log|H(f)|+log|E(f)|!"
!#

!$



Different sounds: Vowels
• Tongue height:
– Low: e.g., /a/
– Mid: e.g., /e/
– High: e.g., /i/

• Tongue advancement:
– Front : e.g., /i/
– Central : e.g., /ə/
– Back : e.g., /u/

• Lip rounding:
– Unrounded: e.g., /ɪ, ɛ, e, ǝ/
– Rounded: e.g.,  /u, o, ɔ/

• Tense/lax:
– Tense: e.g., /i, e, u, o, ɔ, ɑ/
– Lax: e.g., /ɪ, ɛ, æ, ə/

Scharenborg, 2017
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Time domain signal: Hard to tell what he was saying
! " = ℎ " ∗ &(")



!" =spacing between 
adjacent pitch harmonics =
125Hz

!$ =freq of first peak =
500Hz Aliasing artifacts:

Spectra at %& − ( should really
be plotted at −( (negative
frequency components).  DFT
puts it at %& − ( instead.

!) =freq of second peak = 1500Hz 
!*

Magnitude spectrum: A little easier
+ ( = , ( -(()



!" =spacing between 
harmonics =125Hz

!$ =freq of first peak =
500Hz Aliasing artifacts:

Spectra at %& − ( should really
be plotted at −( (negative
frequency components).  DFT
puts it at %& − ( instead.

!) =freq of second peak = 1500Hz 
!*

Log magnitude spectrum: A lot easier
ln |. ( | = ln |/ ( | + ln |1 ( |



Different sounds: Vowels
• Tongue height:
– Low: e.g., /a/
– Mid: e.g., /e/
– High: e.g., /i/

• Tongue advancement:
– Front : e.g., /i/
– Central : e.g., /ə/
– Back : e.g., /u/

• Lip rounding:
– Unrounded: e.g., /ɪ, ɛ, e, ǝ/
– Rounded: e.g.,  /u, o, ɔ/

• Tense/lax:
– Tense: e.g., /i, e, u, o, ɔ, ɑ/
– Lax: e.g., /ɪ, ɛ, æ, ə/

Scharenborg, 2017
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Log spectrum = log filter + log excitation
ln |$ % |
= ln |' % | + ln |) % |

• But how can we separate the 
speech spectrum into the 
transfer function part, and the 
excitation part?
• Bogert, Healy & Tukey: 

• Excitation is high “quefrency” 
(varies rapidly as a function of 
frequency)

• Transfer function is low 
“quefrency” (varies slowly as a 
function of frequency)



Cepstrum = inverse FFT of the log spectrum
(Bogert, Healy & Tukey, 1962)

"̂[$] = '(() ln |- . |
• $ =quefrency.  It has units of 

time.
• IFFT is linear, so since

"̂[$]=/ℎ[$]+1̂[$]
…the transfer function and 
excitation are added together.  All 
we need to do is separate two 
added signals.
• Transfer function and Excitation 

are separated into low-
quefrency (0 < $ < 2ms) and 
high-quefrency ($ > 2ms) parts.



Inverse Discrete Cosine Transform

Log magnitude spectrum is symmetric: ln |$ % | = ln |$ −% |.  Suppose 
we assume that ln $ 0 = 0 and ln $

)*
+

= 0, then
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1
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9:;
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This is called the “inverse discrete cosine transform” or IDCT.  It’s half of the 
real symmetric IFFT of a real symmetric signal.  (note M=N/2).



Liftering = filter(spectrum) = window(cepstrum)
(Bogert, Healy & Tukey, 1962)

Transfer function and Excitation 
are separated into low-quefrency 
(0 < # < 2ms) and high-
quefrency (# > 2ms) parts.  So we 
can recover them by just 
windowing:

&ℎ[#] ≈ +[#]-̂[#]

.̂[#] ≈ (1 − +[#])-̂[#]

+[#] = 41 0 < # < 25-
0 # > 25-



Liftering = filter(spectrum) = window(cepstrum)
(Bogert, Healy & Tukey, 1962)

Then we estimate the transfer 
function and excitation 
spectrum using the FFT:

ln |$ % | ≈ ''((*ℎ[-])

ln |0 % | ≈ ''((2̂[-])



Parseval’s Theorem

L2 norm of a signal equals the L2 norm of its Fourier transform.



Parseval’s Theorem: Examples

• Fourier Series:
1
"#$

%
&(() *+( = -

./01

1
2. *

• DTFT:

-
3/01

1
&[5] * = 1

28#09
9
2(:) *+:

• DFT:

-
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Parseval’s Theorem: Vector Formulation

Suppose we define the vectors "⃗ and #⃗ as the cepstrum and the log 
spectrum, thus 

"⃗ =
"%
…

"'/)*%
, #⃗ =

#%
…

#'/)*%



Parseval’s Theorem: Vector Formulation

That way Parseval’s theorem can be written very simply as

!
"#$

%/'($
)"' = !

+#$

%/'($
,+'

…or even more simply as…
)⃗ ' = ,⃗ '

i.e., the L2 norm of the cepstrum equals the L2 norm of the log 
spectrum.



What it means for Gaussian classifiers

Suppose we have two acoustic signals !(#) and %(#), and we want to 
find out how different they sound.  If they have static spectra, then a 
good measure of their difference is the distance between their log 
spectra:

& = (
)*+

,/./+
0) − 2) . = (

3*+

,/./+
!3 − %3 . = !⃗ − %⃗ . = 0⃗ − 2 .



Low-pass liftering smooths the spectrum



Low-pass liftered L2 norm

If you want to know whether two signals are the same vowel, then you 
want to know how different their smoothed spectra are.  Let H(k) be 
your liftering function.  You lifter the log spectrum = windowing the 
cepstrum, then find the distance:

! = #
$%&

'()
* + ∗ -$ − * + ∗ /$ 0 = #

1%&

'()
ℎ0[4] 61 − 71 0



Low-pass liftered L2 norm

In particular, suppose

ℎ[#] = &1 0 < # ≤ 15
0 # > 15

Then

-
./0

1
2 3 ∗ ln 7 3 + 0.5 :;

< −2 3 ∗ ln > (3 + 0.5):;
<

A

= -
B/C

CD
EB − FB A



MFCC: mel-frequency cepstral coefficients

• Divide the acoustic signal into frames
• Compute the magnitude FFT of each frame

• Filterbank coefficients: !" = ln∑'()
*
+,-."(0) 2 '34

5
• MFCC: 6[8] = ∑"():,- !" cos > "?).A B

:
• Liftering: keep only the first 12-15 MFCC coefficients, set the rest to 

zero.


