UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2018

EXAM 1

Thursday, October 18, 2018

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Fourier Transforms

$$
\begin{gathered}
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega \leftrightarrow X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N} \leftrightarrow X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \\
\delta[n] \leftrightarrow 1, \quad e^{j \alpha n} \leftrightarrow 2 \pi \delta(\omega-\alpha) \\
\\
\sum_{\ell=-\infty}^{\infty} \delta\left[n-\ell T_{0}\right] \leftrightarrow\left(\frac{2 \pi}{T_{0}}\right) \sum_{m=0}^{T_{0}-1} \delta\left(\omega-\frac{2 \pi m}{T_{0}}\right) \\
h[n] * x[n] \leftrightarrow H\left(e^{j \omega}\right) X\left(e^{j \omega}\right), \quad w[n] x[n] \leftrightarrow \frac{1}{2 \pi} W\left(e^{j \omega}\right) \circledast X\left(e^{j \omega}\right)
\end{gathered}
$$

Statistical, Signal, and Circular Autocorrelation Functions

$$
R_{x x}[n]=E\{x[m] x[m-n]\}, \quad r_{x x}[n]=\sum_{m=-\infty}^{\infty} x[m] x[m-n], \quad \tilde{r}_{x x}[n]=\sum_{m=0}^{N-1} x[m] x\left[\langle m-n\rangle_{N}\right]
$$

Gaussians, Mahalanobis, and PCA

$$
\begin{gathered}
\mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2} d_{\Sigma}^{2}(\vec{x}, \vec{\mu})} \\
\Sigma=V \Lambda V^{T}, \quad V^{T} V=V V^{T}=I, \quad|\Sigma|=|\Lambda| \\
d_{\Sigma}^{2}(\vec{x}, \vec{\mu})=(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})=\vec{y}^{T} \Lambda^{-1} \vec{y}, \quad \vec{y}=V^{T}(\vec{x}-\vec{\mu})
\end{gathered}
$$

Miscellaneous

$$
\begin{aligned}
\operatorname{mel}(f) & =2595 \log _{10}\left(1+\frac{f}{700}\right) \\
\cos (a) \cos (b) & =\frac{1}{2} \cos (a-b)+\frac{1}{2} \cos (a+b)
\end{aligned}
$$

Forward-Backward Algorithm

$$
\begin{gathered}
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{x}_{1}\right), \quad \alpha_{t}(i)=\sum_{j=1}^{N} \alpha_{t-1}(j) a_{j i} b_{i}\left(\vec{x}_{t}\right) \\
\beta_{T}(i)=1, \quad \beta_{t}(i)=\sum_{j=1}^{N} \beta_{t+1}(j) a_{i j} b_{j}\left(\vec{x}_{t+1}\right)
\end{gathered}
$$

Problem 1 (16 points)

A particular random signal $u[n]$ has the following DTFT:

$$
U\left(e^{j \omega}\right)=a e^{j \theta} \delta(\omega-0.2 \pi)+a e^{-j \theta} \delta(\omega+02 . \pi)
$$

where

- a is a real-valued Gaussian random variable with mean 0 and variance σ^{2}
- θ is a real-valued random variable uniformly distributed between 0 and 2π.

Find the random signal $u[n]$, and its statistical autocorrelation $R_{u u}[m]$, in terms of a, σ^{2}, θ, n, and/or m.

Problem 2 (17 points)

A particular voiced speech signal has pitch period P, and vocal tract transfer function $H\left(e^{j \omega}\right)$. The signal is windowed by a window function $w[n]$ of length N, producing the windowed signal

$$
s[n]= \begin{cases}w[n] \sum_{\ell=-\infty}^{\infty} h[n-\ell P] & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $S[k]$, the N-point DFT of $s[n]$, in terms of $k, P, N, H\left(e^{j \omega}\right)$, and $W\left(e^{j \omega}\right)$.
\qquad

Problem 3 (17 points)

Your goal is to find a positive real number, a, so that $a x[n]$ is as similar as possible to $y[n]$ in the sense that it minimizes the following error:

$$
\epsilon=\int_{-\pi}^{\pi}\left(\left|Y\left(e^{j \omega}\right)\right|-a\left|X\left(e^{j \omega}\right)\right|\right)^{2} d \omega
$$

Find the value of a that mininimizes ϵ, in terms of $\left|X\left(e^{j \omega}\right)\right|$ and $\left|Y\left(e^{j \omega}\right)\right|$.
\qquad

Problem 4 (17 points)

A 2-dimensional Gaussian random vector has mean $\vec{\mu}$ and covariance Σ given by

$$
\vec{\mu}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]
$$

Draw a curve of some kind, on a two-dimensional Cartesian plane, showing the set of points $\left\{\vec{x}: p_{X}(\vec{x})=\frac{1}{8 \pi} e^{-\frac{1}{2}}\right\}$.

NAME:

Problem 5 (16 points)
In terms of $\alpha_{t}(i), \beta_{t}(i), a_{i j}, \pi_{i}$ and $b_{i}\left(\vec{x}_{t}\right)$, find

$$
p\left(q_{6}=i, q_{7}=j \mid \vec{x}_{1}, \ldots, \vec{x}_{20}\right)
$$

Problem 6 (17 points)

A particular HMM-based speech recognizer only knows two words: word w_{0}, and word w_{1}. Word w_{0} has a higher a priori probability: $p_{Y}\left(w_{0}\right)=0.7$, while $p_{Y}\left(w_{1}\right)=0.3$. Each of the two words is modeled by a four-state Gaussian $\operatorname{HMM}(N=4)$ with three-dimensional observations $(D=3)$. All states, in both HMMs, have identity covariance $\left(\Sigma_{i}=I\right)$. Both HMMs have exactly the same transition probabilities and state-dependent means, given by:

Both Words: $A=\left[\begin{array}{llll}0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25\end{array}\right], \vec{\mu}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \vec{\mu}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \vec{\mu}_{3}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right], \vec{\mu}_{4}=\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
But the initial residence probabilities are different:

$$
\text { Word 0: } \pi_{i}=\left\{\begin{array}{ll}
1 & i=1 \\
0 & \text { otherwise }
\end{array} \quad \text { Word 1: } \pi_{i}= \begin{cases}1 & i=4 \\
0 & \text { otherwise }\end{cases}\right.
$$

Suppose that you have a two-frame observation, $X=\left[\vec{x}_{1}, \vec{x}_{2}\right]$, where $\vec{x}_{t}=\left[x_{1 t}, x_{2 t}, x_{3 t}^{T}\right]$. The MAP decision rule, in this case, can be written as a linear classifier,

$$
\hat{y}=\left\{\begin{array}{cc}
w_{1} & \vec{w}_{1}^{T} \vec{x}_{1}+\vec{w}_{2}^{T} \vec{x}_{2}+b>0 \\
w_{0} & \text { otherwise }
\end{array}\right.
$$

Find \vec{w}_{1}, \vec{w}_{2}, and b.

NAME:

