UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2018

EXAM 2

Saturday, December 15, 2018

- This is a CLOSED-BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Neural Nets

$$
\begin{aligned}
a_{k} & =u_{k 0}+\sum_{j} w_{k j} x_{j} \\
y_{k} & =g\left(a_{k}\right) \\
\frac{\partial E}{\partial x_{j}} & =\sum_{k} w_{k j} g^{\prime}\left(a_{k}\right) \frac{\partial E}{\partial y_{k}}
\end{aligned}
$$

Logistic Function

$$
\sigma(x)=\frac{1}{1+e^{-x}}, \quad \sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))
$$

Loss Functions

$$
\begin{aligned}
E_{M S E} & =\frac{1}{n} \sum_{i=1}^{n}\left\|\vec{z}_{i}-\vec{\zeta}_{i}\right\|^{2} \\
E_{C E} & =-\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{r} \zeta_{i \ell} \ln z_{i \ell} \\
E_{C E} & =-\frac{1}{n} \sum_{i=1}^{n}\left(\zeta_{i} \ln z_{i}+\left(1-\zeta_{i}\right) \ln \left(1-z_{i}\right)\right)
\end{aligned}
$$

Affine Transform

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Barycentric Coordinates

$$
\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]
$$

LSTM

$$
\begin{aligned}
\vec{i}[n] & =\text { input gate }=\sigma\left(B_{i} \vec{x}[n]+A_{i} \vec{c}[n-1]\right) \\
\vec{o}[n] & =\text { output gate }=\sigma\left(B_{o} \vec{x}[n]+A_{o} \vec{c}[n-1]\right) \\
\vec{f}[n] & =\text { forget gate }=\sigma\left(B_{f} \vec{x}[n]+A_{f} \vec{c}[n-1]\right) \\
\vec{c}[n] & =\vec{f}[n] \odot c[n-1]+\vec{i}[n] \odot g\left(B_{c} \vec{x}[n]+A_{c} \vec{c}[n-1]\right) \\
\vec{y}[n] & =\vec{o}[n] \odot \vec{c}[n]
\end{aligned}
$$

\qquad

Problem 1 (16 points)

In class, we have been working with the exponential softmax function, but other forms exist. For example, the polynomial softmax function transforms inputs b_{ℓ} into outputs z_{ℓ} according to

$$
z_{\ell}=\frac{b_{\ell}^{p}}{\sum_{k} b_{k}^{p}},
$$

for some constant integer power, p. The cross-entropy loss is

$$
E=-\sum_{\ell} \zeta_{\ell} \ln z_{\ell}, \quad \zeta_{\ell}= \begin{cases}1 & \ell=\ell^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Find $\frac{\partial E}{\partial b_{j}}$ for all j.

Problem 2 (17 points)

Suppose you have a 10-pixel input image, $x[n]$. This is processed by a one-pixel "convolution" (really just multiplication by a scalar coefficient, w), followed by a stride- 2 max pooling layer, thus:

$$
\begin{aligned}
& a[n]=w x[n], \quad 1 \leq n \leq 10 \\
& y[k]=\max \left(0, \max _{2 k-1 \leq n \leq 2 k} a[n]\right), 1 \leq k \leq 5
\end{aligned}
$$

Suppose you know the input $x[n]$, and you know $\epsilon[k]=\frac{\partial E}{\partial y[k]}$. Find $\frac{\partial E}{\partial w}$ in terms of $x[n]$ and $\epsilon[k]$.
\qquad

Problem 3 (16 points)

Remember that an affine transform is defined by a matrix with the following form:

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]
$$

Define the scalar term λ to be $\lambda=b d-(a-1)(e-1)$. It turns out that, as long as $\lambda \neq 0$, there is exactly one input vector of the form $\vec{u}_{0}=\left[u_{0}, v_{0}, 1\right]^{T}$ that maps to itself $\left(A \vec{u}_{0}=\vec{u}_{0}\right)$. Find u_{0} and v_{0} in terms of a, b, c, d, e, f and λ. HINT: you may find it useful to know that the inverse of a 2×2 matrix is

$$
\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]^{-1}=\frac{1}{\alpha \delta-\beta \gamma}\left[\begin{array}{cc}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right]
$$

Problem 4 (17 points)

Suppose that you have a training dataset with n training tokens $\left\{\left(\vec{x}_{1}, \zeta_{1}\right), \ldots,\left(\vec{x}_{n}, \zeta_{n}\right)\right\}$, where $\vec{x}_{i}=\left[x_{i 1}, \ldots, x_{i p}\right]^{T}$, and $\zeta_{i} \in\{0,1\}$. You have a one-layer neural network that tries to approximate ζ_{i} with z_{i}, computed as $z_{i}=\sigma\left(\vec{w}^{T} \vec{x}_{i}\right)$, where $\sigma(\cdot)$ is the logistic function, and \vec{w} is a weight vector. Suppose that you want to maximize the accuracy of z_{i}, but you also want to make $\vec{w}^{T} \vec{x}_{i}$ as small as possible. One way to do this is by using a two-part error metric,

$$
E=-\frac{1}{n} \sum_{i=1}^{n}\left(\zeta_{i} \ln z_{i}+\left(1-\zeta_{i}\right) \ln \left(1-z_{i}\right)\right)+\frac{1}{2 n} \sum_{i=1}^{n}\left(\vec{w}^{T} \vec{x}_{i}\right)^{2}
$$

Find $\nabla_{\vec{w}} E$, the gradient of E with respect to \vec{w}.
\qquad

Problem 5 (17 points)

The Barycentric coordinates of point $\vec{x}_{0}=\left[x_{0}, y_{0}, 1\right]^{T}$, as defined by the triangle $\vec{x}_{1}=$ $\left[x_{1}, y_{1}, 1\right]^{T}, \vec{x}_{2}=\left[x_{2}, y_{2}, 1\right]^{T}, \vec{x}_{3}=\left[x_{3}, y_{3}, 1\right]^{T}$, are the coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $\vec{x}_{0}=$ $\lambda_{1} \vec{x}_{1}+\lambda_{2} \vec{x}_{2}+\lambda_{3} \vec{x}_{3}$. If we constrain $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$, then there are actually only two degrees of freedom; for example, we could substitute $\lambda_{3}=1-\lambda_{1}-\lambda_{2}$. A more interesting way to specify the two degrees of freedom is by defining variables a and b such that

$$
\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
a b \\
(1-a) b \\
1-b
\end{array}\right]
$$

Draw a two-dimensional Cartesian plane, and label the x and y axes. Label the point $\vec{x}_{1}=$ $[0,0,1]^{T}, \vec{x}_{2}=[2,0,1]^{T}, \vec{x}_{3}=[1,2,1]^{T}$, and $\vec{x}_{0}=[1,1,1]^{T}$. Now, given the other four points, specify the line segment connecting the point \vec{x}_{3} to the point $a \vec{x}_{1}+(1-a) \vec{x}_{2}$.

Problem 6 (17 points)

Consider a scalar LSTM, with a scalar memory cell, input gate, output gate, and forget gate, related to one another by scalar coefficients $a_{i}, b_{i}, a_{o}, b_{o}, a_{f}, b_{f}, a_{c}, b_{c}$ as follows:

$$
\begin{aligned}
i[n] & =\text { input gate }=\sigma\left(b_{i} x[n]+a_{i} c[n-1]\right), \quad 1 \leq n \\
o[n] & =\text { output gate }=\sigma\left(b_{o} x[n]+a_{o} c[n-1]\right), \quad 1 \leq n \\
f[n] & =\text { forget gate }=\sigma\left(b_{f} x[n]+a_{f} c[n-1]\right), \quad 1 \leq n \\
c[n] & =f[n] c[n-1]+i[n]\left(b_{c} x[n]+a_{c} c[n-1]\right), 1 \leq n \\
y[n] & =o[n] c[n], \quad 1 \leq n
\end{aligned}
$$

Suppose that the network is initialized with $b_{i}=b_{o}=b_{f}=a_{i}=a_{o}=a_{f}=a_{c}=0$, and $c[0]=0$. In fact, the only nonzero coefficient is $b_{c}=1$. Under this condition, find a formula for $y[n]$ in terms of the values of $x[m], 1 \leq m \leq n$. No variables other than $x[m]$ should appear in your answer. HINT: $\sigma(0)=1 / 2$.

NAME:

