ECE 417 Multimedia Signal Processing MP1 - Multiband Excitation Speech Synthesis

Leda Sari

September 13, 2018

- Implement a speech synthesis algorithm based on the multiband excitation synthesis method of Griffin and Lim, 1988
- Speech signal representation: Short time Fourier transform of a windowed signal

$$|S_w(\omega)| = \underbrace{|H_w(\omega)|}_{\text{Spectral Envelope}} \cdot \underbrace{|E_w(\omega)|}_{\text{Excitation spectrum}}$$

- Implement a speech synthesis algorithm based on the multiband excitation synthesis method of Griffin and Lim, 1988
- Speech signal representation: Short time Fourier transform of a windowed signal

$$|S_w(\omega)| = \underbrace{|H_w(\omega)|}_{\text{Spectral Envelope}} \cdot \underbrace{|E_w(\omega)|}_{\text{Excitation spectrum}}$$

- Implement a speech synthesis algorithm based on the multiband excitation synthesis method of Griffin and Lim, 1988
- Speech signal representation: Short time Fourier transform of a windowed signal

- Implement a speech synthesis algorithm based on the multiband excitation synthesis method of Griffin and Lim, 1988
- Speech signal representation: Short time Fourier transform of a windowed signal

Overview

1. Analysis

- 1.1 Apply short-time processing of speech signal
- 1.2 Estimate the parameters of the spectral envelope and the excitation at each frequency band for each speech frame

2. Synthesis

- 2.1 Voiced speech: time-domain reconstruction
- 2.2 Unvoiced speech: frequency-domain reconstruction
- 3. Apply the synthesis algorithm to
 - 3.1 Given clean signal (s5.wav)
 - 3.2 Noisy version of s5.wav additive Gaussian noise
 - 3.3 Your own signal

Speech Signal

scipy.io.wavfile.read (Python) or audioread (MATLAB) 25ms frames with 10ms shift

Windowed Frames

Use Hamming window

Short-time Spectrum

scipy.fftpack.fftpack.fft or fft

Spectrogram

Analysis - Pitch Estimation

For a given speech frame s and a window w, compute the autocorrelation of $w^2[n]s[n]$:

$$\phi(m) = \sum_{n = -\infty}^{\infty} w^2[n] s[n] w^2[n - m] s[n - m]$$
 (1)

Get a rough integer estimate for the pitch:

$$P_0 = \arg\max_{P} \Phi(P) = \arg\max_{P} P \sum_{k=-\infty}^{\infty} \phi(kP)$$
 (2)

Pitch Estimation

Figure: Autocorrelation

Figure : $\Phi(P)$ versus P

Analysis - Pitch Refinement and Spectral Envelope

For a given rough pitch estimate P_0 ,

- 1. Compute $\omega_0 = 2\pi/P_0$
- 2. Determine the frequency bands:

$$[a_m, b_m] = \left[\left(m - \frac{1}{2} \right) \omega_0, \left(m + \frac{1}{2} \right) \omega_0 \right], m = 1, 2, \dots, P_0 - 1$$

- 3. Compute $A_m = \frac{\int_{a_m}^{b_m} S_w(\omega) E^*(\omega) d\omega}{\int_{a_m}^{b_m} |E(\omega)|^2 d\omega}$
 - 3.1 Assume that the m-th band is voiced: take $E_w(\omega)$ as the Fourier transform of the window centered around $m\omega_0$
 - 3.2 Assume that the m-th band is unvoiced: take $E_w(\omega)=1,\ \omega\in[a_m,b_m]$
 - 3.3 For each case, compute the error $\varepsilon_m(P_0) = \frac{1}{2\pi} \int_{a_m}^{b_m} |S_w(\omega) A_m E_w(\omega)|^2 d\omega$
 - 3.4 If $\varepsilon_{m,\text{voiced}} < \varepsilon_{m,\text{unvoiced}}^m$, band m is voiced, otherwise it is unvoiced
 - 3.5 Pick the corresponding A_m parameter
- 4. Compute the total error: $\varepsilon(P_0) = \sum_{m=1}^{P_0-1} \varepsilon_m(P_0)$

Parameter Estimation

Voiced/unvoiced? A_m ?

Analysis - Pitch Refinement

- For each pitch estimate in $[P_0-2, P_0-1.8, P_0-1.6, \dots, P_0+1.8, P_0+2]$
- ullet Repeat the previous procedure and compare the errors arepsilon(P)
- Final pitch estimate is $P = \arg \min_{P} \varepsilon(P)$
- \bullet Compute values of A_m and voiced/unvoiced decisions for the refined P

Synthesis - Voiced Part

Let the speech segments be taken at every K samples, to reconstruct the samples of the voiced signal between [fK,(f+1)K)

$$s_v[n] = \sum_{m} A_m[n] \cos(\theta_m[n]) \tag{3}$$

$$\theta_m[n] = \theta_m[n-1] + m\omega_0[n] \tag{4}$$

$$\omega_0[n] = \left(f + 1 - \frac{n}{K}\right) \frac{2\pi}{P_f} + \left(\frac{n}{K} - f\right) \frac{2\pi}{P_{f+1}} \tag{5}$$

$$A_m[n] = \left(f + 1 - \frac{n}{K}\right) A_{m,f} + \left(\frac{n}{K} - f\right) A_{m,f+1} \tag{6}$$

Notes:

- Take $A_{m,f} = 0$ for unvoiced bands
- Due to differences between pitch estimates between consecutive frames, the number of bands can change between frames. For the nonexistent bands, assume that $A_m=0$.
- For the first frame (f=0), assume that $\theta_m[-1]=0$
- For the last frame, take $\omega_0 = \frac{2\pi}{P_f}, A_m[n] = A_{m,f}$

Voiced Part

Synthesis - Unvoiced Part

For each unvoiced band in each frame

- 1. Estimate the noise variance $\sigma_m^2 = \frac{1}{b_m a_m} \int_{a_m}^{b_m} |S_w(\omega)|^2 d\omega$
- 2. Sample the noise transform:

$$U_f[k] = \begin{cases} 0, & 2\pi k/N_{fft} \text{ is voiced} \\ \mathcal{N}(0, 0.5\sigma_m^2) + j\mathcal{N}(0, 0.5\sigma_m^2), & \text{else} \end{cases}$$
 (7)

- 3. Compute $u_f[n]$ by inverse FFT
- 4. Use linear interpolation to construct $s_u[n]$: for $fK \leq n < (f+1)K$

$$s_{u}[n] = \left(f + 1 - \frac{n}{K}\right) u_{f}[n - fK] + \left(\frac{n}{K} - f\right) u_{f+1}[n - (f+1)K]$$
(8)

Unvoiced Part

Steps

- 1. After synthesis, save the output (*scipy.io.wavfile.write* or *audiowrite*) and listen. Can you understand what is being spoken?
- 2. Compare the spectrograms of the original and the synthetic speech
- 3. Change your multiband voiced/unvoiced decisions to a single decision and synthesize the signal again
- 4. Artificially add Gaussian noise to the original speech signal with different variances, repeat previous steps
- 5. Record your own voice and repeat steps 1-3

Remarks

- For numerical values of the parameters, refer to the MP description
 - Female voice has lower pitch period, so when processing your own speech, you may need to adjust the range of the pitch appropriately
- Please check the Notes section of the MP description
- Reports
 - Include your plots (pitch vs frame, error vs frame, spectrograms) and label the axes properly
 - Also include qualitative comparison of the outputs
- Submission
 - Submit your report (PDF) and codes (zip) to Compass
 - File names must be <Lastname>_<Firstname>_report.pdf and <Lastname>_<Firstname>_code.zip
 - Teams will submit a single report but make sure that all names are included in the report
- Questions
 - Post questions on Piazza
 - Come to the office hours